Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(39): 24443-24449, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32900928

RESUMO

Polysaccharide-protein conjugates have been developed to overcome the T-independent response, hyporesponsiveness to repeated vaccination, and poor immunogenicity in infants of polysaccharides. To address the impact of polysaccharide length, typhoid conjugates made with short- and long-chain fractions of Vi polysaccharide with average sizes of 9.5, 22.8, 42.7, 82.0, and 165 kDa were compared. Long-chain-conjugated Vi (165 kDa) induced a response in both wild-type and T cell-deficient mice, suggesting that it maintains a T-independent response. In marked contrast, short-chain Vi (9.5 to 42.7 kDa) conjugates induced a response in wild-type mice but not in T cell-deficient mice, suggesting that the response is dependent on T cell help. Mechanistically, this was explained in neonatal mice, in which long-chain, but not short-chain, Vi conjugate induced late apoptosis of Vi-specific B cells in spleen and early depletion of Vi-specific B cells in bone marrow, resulting in hyporesponsiveness and lack of long-term persistence of Vi-specific IgG in serum and IgG+ antibody-secreting cells in bone marrow. We conclude that while conjugation of long-chain Vi generates T-dependent antigens, the conjugates also retain T-independent properties, leading to detrimental effects on immune responses. The data reported here may explain some inconsistencies observed in clinical trials and help guide the design of effective conjugate vaccines.


Assuntos
Proteínas de Bactérias/administração & dosagem , Polissacarídeos Bacterianos/administração & dosagem , Vacinas contra Salmonella/administração & dosagem , Salmonella typhi/imunologia , Linfócitos T/imunologia , Febre Tifoide/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Linfócitos B/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Feminino , Humanos , Imunoglobulina G/imunologia , Masculino , Camundongos , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/genética , Polissacarídeos Bacterianos/imunologia , Vacinas contra Salmonella/genética , Vacinas contra Salmonella/imunologia , Salmonella typhi/genética , Febre Tifoide/microbiologia , Febre Tifoide/prevenção & controle , Vacinas Conjugadas/administração & dosagem , Vacinas Conjugadas/genética , Vacinas Conjugadas/imunologia
2.
BMC Infect Dis ; 22(1): 514, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35655169

RESUMO

BACKGROUND: The city of Melbourne, Australia experienced two waves of the COVID-19 epidemic peaking, the first in March and a more substantial wave in July 2020. During the second wave, a series of control measure were progressively introduced that initially slowed the growth of the epidemic then resulted in decreasing cases until there was no detectable local transmission. METHODS: To determine the relative efficacy of the progressively introduced intervention measures, we modelled the second wave as a series of exponential growth and decay curves. We used a linear regression of the log of daily cases vs time, using a four-segment linear spline model corresponding to implementation of the three successive major public health measures. The primary model used all reported cases between 14 June and 15 September 2020 then compared the projection of the model with observed cases predicting future case trajectory up until the 31 October 2020 to assess the use of exponential models in projecting the future course and planning future interventions. The main outcome measures were the exponential daily growth constants, analysis of residuals and estimates of the 95% confidence intervals for the expected case distributions, comparison of predicted daily cases. RESULTS: The exponential growth/decay constants in the primary analysis were: 0.122 (s.e. 0.004), 0.035 (s.e. 0.005), - 0.037 (s.e. 0.011), and - 0.069 (s.e. 0.003) for the initial growth rate, Stage 3, Stage 3 + compulsory masks and Stage 4, respectively. Extrapolation of the regression model from the 14 September to the 31 October matched the decline in observed cases over this period. CONCLUSIONS: The four-segment exponential model provided an excellent fit of the observed reported case data and predicted the day-to-day range of expected cases. The extrapolated regression accurately predicted the decline leading to epidemic control in Melbourne.


Assuntos
COVID-19 , Epidemias , Austrália/epidemiologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , Previsões , Humanos , Saúde Pública
3.
Proc Natl Acad Sci U S A ; 115(41): 10428-10433, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30262653

RESUMO

Nontyphoidal Salmonellae cause a devastating burden of invasive disease in sub-Saharan Africa with high levels of antimicrobial resistance. Vaccination has potential for a major global health impact, but no licensed vaccine is available. The lack of commercial incentive makes simple, affordable technologies the preferred route for vaccine development. Here we compare equivalent Generalized Modules for Membrane Antigens (GMMA) outer membrane vesicles and O-antigen-CRM197 glycoconjugates to deliver lipopolysaccharide O-antigen in bivalent Salmonella Typhimurium and Enteritidis vaccines. Salmonella strains were chosen and tolR deleted to induce GMMA production. O-antigens were extracted from wild-type bacteria and conjugated to CRM197 Purified GMMA and glycoconjugates were characterized and tested in mice for immunogenicity and ability to reduce Salmonella infection. GMMA and glycoconjugate O-antigen had similar structural characteristics, O-acetylation, and glucosylation levels. Immunization with GMMA induced higher anti-O-antigen IgG than glycoconjugate administered without Alhydrogel adjuvant. With Alhydrogel, antibody levels were similar. GMMA induced a diverse antibody isotype profile with greater serum bactericidal activity than glycoconjugate, which induced almost exclusively IgG1. Immunization reduced bacterial colonization of mice subsequently infected with SalmonellaS Typhimurium numbers were lower in tissues of mice vaccinated with GMMA compared with glycoconjugate. S. Enteritidis burden in the tissues was similar in mice immunized with either vaccine. With favorable immunogenicity, low cost, and ability to induce functional antibodies and reduce bacterial burden, GMMA offer a promising strategy for the development of a nontyphoidal Salmonella vaccine compared with established glycoconjugates. GMMA technology is potentially attractive for development of vaccines against other bacteria of global health significance.


Assuntos
Anticorpos Antibacterianos/imunologia , Glicoconjugados/imunologia , Antígenos O/imunologia , Infecções por Salmonella/imunologia , Vacinas contra Salmonella/uso terapêutico , Salmonella enteritidis/imunologia , Salmonella typhimurium/imunologia , Animais , Anticorpos Antibacterianos/sangue , Camundongos , Infecções por Salmonella/prevenção & controle , Vacinação
4.
Int J Mol Sci ; 22(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34638530

RESUMO

Outer Membrane Vesicles (OMV) constitute a promising platform for the development of efficient vaccines. OMV can be decorated with heterologous antigens (proteins or polysaccharides), becoming attractive novel carriers for the development of multicomponent vaccines. Chemical conjugation represents a tool for linking antigens, also from phylogenetically distant pathogens, to OMV. Here we develop two simple and widely applicable conjugation chemistries targeting proteins or lipopolysaccharides on the surface of Generalized Modules for Membrane Antigens (GMMA), OMV spontaneously released from Gram-negative bacteria mutated to increase vesicle yield and reduce potential reactogenicity. A Design of Experiment approach was used to identify optimal conditions for GMMA activation before conjugation, resulting in consistent processes and ensuring conjugation efficiency. Conjugates produced by both chemistries induced strong humoral response against the heterologous antigen and GMMA. Additionally, the use of the two orthogonal chemistries allowed to control the linkage of two different antigens on the same GMMA particle. This work supports the further advancement of this novel platform with great potential for the design of effective vaccines.


Assuntos
Proteínas de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Vesículas Extracelulares/imunologia , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/química , Vacinas Bacterianas/biossíntese , Feminino , Lipopolissacarídeos/imunologia , Camundongos , Neisseria meningitidis/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/química , Vacinas Protozoárias/biossíntese , Salmonella typhimurium/imunologia , Shigella sonnei/imunologia
5.
Int J Mol Sci ; 21(22)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202815

RESUMO

No commercial vaccine is yet available against Group A Streptococcus (GAS), major cause of pharyngitis and impetigo, with a high frequency of serious sequelae in low- and middle-income countries. Group A Carbohydrate (GAC), conjugated to an appropriate carrier protein, has been proposed as an attractive vaccine candidate. Here, we explored the possibility to use GAS Streptolysin O (SLO), SpyCEP and SpyAD protein antigens with dual role of antigen and carrier, to enhance the efficacy of the final vaccine and reduce its complexity. All protein antigens resulted good carrier for GAC, inducing similar anti-GAC IgG response to the more traditional CRM197 conjugate in mice. However, conjugation to the polysaccharide had a negative impact on the anti-protein responses, especially in terms of functionality as evaluated by an IL-8 cleavage assay for SpyCEP and a hemolysis assay for SLO. After selecting CRM197 as carrier, optimal conditions for its conjugation to GAC were identified through a Design of Experiment approach, improving process robustness and yield This work supports the development of a vaccine against GAS and shows how novel statistical tools and recent advancements in the field of conjugation can lead to improved design of glycoconjugate vaccines.


Assuntos
Antígenos de Bactérias , Proteínas de Bactérias , Glicoconjugados , Vacinas Estreptocócicas , Vacinas Conjugadas , Animais , Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Feminino , Glicoconjugados/química , Glicoconjugados/imunologia , Camundongos , Vacinas Estreptocócicas/síntese química , Vacinas Estreptocócicas/química , Vacinas Estreptocócicas/imunologia , Vacinas Conjugadas/química , Vacinas Conjugadas/imunologia
6.
PLoS Pathog ; 11(3): e1004749, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25794007

RESUMO

Shigella is the leading cause for dysentery worldwide. Together with several virulence factors employed for invasion, the presence and length of the O antigen (OAg) of the lipopolysaccharide (LPS) plays a key role in pathogenesis. S. flexneri 2a has a bimodal OAg chain length distribution regulated in a growth-dependent manner, whereas S. sonnei LPS comprises a monomodal OAg. Here we reveal that S. sonnei, but not S. flexneri 2a, possesses a high molecular weight, immunogenic group 4 capsule, characterized by structural similarity to LPS OAg. We found that a galU mutant of S. sonnei, that is unable to produce a complete LPS with OAg attached, can still assemble OAg material on the cell surface, but a galU mutant of S. flexneri 2a cannot. High molecular weight material not linked to the LPS was purified from S. sonnei and confirmed by NMR to contain the specific sugars of the S. sonnei OAg. Deletion of genes homologous to the group 4 capsule synthesis cluster, previously described in Escherichia coli, abolished the generation of the high molecular weight OAg material. This OAg capsule strongly affects the virulence of S. sonnei. Uncapsulated knockout bacteria were highly invasive in vitro and strongly inflammatory in the rabbit intestine. But, the lack of capsule reduced the ability of S. sonnei to resist complement-mediated killing and to spread from the gut to peripheral organs. In contrast, overexpression of the capsule decreased invasiveness in vitro and inflammation in vivo compared to the wild type. In conclusion, the data indicate that in S. sonnei expression of the capsule modulates bacterial pathogenesis resulting in balanced capabilities to invade and persist in the host environment.


Assuntos
Cápsulas Bacterianas/metabolismo , Antígenos O/biossíntese , Shigella sonnei/metabolismo , Shigella sonnei/patogenicidade , Animais , Cápsulas Bacterianas/genética , Técnicas de Silenciamento de Genes , Antígenos O/genética , Coelhos , Shigella sonnei/genética
7.
Proc Natl Acad Sci U S A ; 111(34): 12307-12, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25136089

RESUMO

With the 2010s declared the Decade of Vaccines, and Millennium Development Goals 4 and 5 focused on reducing diseases that are potentially vaccine preventable, now is an exciting time for vaccines against poverty, that is, vaccines against diseases that disproportionately affect low- and middle-income countries (LMICs). The Global Burden of Disease Study 2010 has helped better understand which vaccines are most needed. In 2012, US$1.3 billion was spent on research and development for new vaccines for neglected infectious diseases. However, the majority of this went to three diseases: HIV/AIDS, malaria, and tuberculosis, and not neglected diseases. Much of it went to basic research rather than development, with an ongoing decline in funding for product development partnerships. Further investment in vaccines against diarrheal diseases, hepatitis C, and group A Streptococcus could lead to a major health impact in LMICs, along with vaccines to prevent sepsis, particularly among mothers and neonates. The Advanced Market Commitment strategy of the Global Alliance for Vaccines and Immunisation (GAVI) Alliance is helping to implement vaccines against rotavirus and pneumococcus in LMICs, and the roll out of the MenAfriVac meningococcal A vaccine in the African Meningitis Belt represents a paradigm shift in vaccines against poverty: the development of a vaccine primarily targeted at LMICs. Global health vaccine institutes and increasing capacity of vaccine manufacturers in emerging economies are helping drive forward new vaccines for LMICs. Above all, partnership is needed between those developing and manufacturing LMIC vaccines and the scientists, health care professionals, and policy makers in LMICs where such vaccines will be implemented.


Assuntos
Vacinas/farmacologia , Vacinas contra a AIDS/farmacologia , Controle de Doenças Transmissíveis/métodos , Países em Desenvolvimento , Diarreia/prevenção & controle , Saúde Global , Humanos , Vacinas Antimaláricas/farmacologia , Doenças Negligenciadas/prevenção & controle , Áreas de Pobreza , Infecções Respiratórias/prevenção & controle , Vacinas contra a Tuberculose/farmacologia , Vacinas/economia
8.
Int J Med Microbiol ; 306(2): 99-108, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26746581

RESUMO

Outer membrane blebs are naturally shed by Gram-negative bacteria and are candidates of interest for vaccines development. Genetic modification of bacteria to induce hyperblebbing greatly increases the yield of blebs, called Generalized Modules for Membrane Antigens (GMMA). The composition of the GMMA from hyperblebbing mutants of Shigella flexneri 2a and Shigella sonnei were quantitatively analyzed using high-sensitivity mass spectrometry with the label-free iBAQ procedure and compared to the composition of the solubilized cells of the GMMA-producing strains. There were 2306 proteins identified, 659 in GMMA and 2239 in bacteria, of which 290 (GMMA) and 1696 (bacteria) were common to both S. flexneri 2a and S. sonnei. Predicted outer membrane and periplasmic proteins constituted 95.7% and 98.7% of the protein mass of S. flexneri 2a and S. sonnei GMMA, respectively. Among the remaining proteins, small quantities of ribosomal proteins collectively accounted for more than half of the predicted cytoplasmic protein impurities in the GMMA. In GMMA, the outer membrane and periplasmic proteins were enriched 13.3-fold (S. flexneri 2a) and 8.3-fold (S. sonnei) compared to their abundance in the parent bacteria. Both periplasmic and outer membrane proteins were enriched similarly, suggesting that GMMA have a similar surface to volume ratio as the surface to periplasmic volume ratio in these mutant bacteria. Results in S. flexneri 2a and S. sonnei showed high reproducibility indicating a robust GMMA-producing process and the low contamination by cytoplasmic proteins support the use of GMMA for vaccines. Data are available via ProteomeXchange with identifier PXD002517.


Assuntos
Antígenos de Bactérias/análise , Antígenos de Superfície/análise , Proteômica , Shigella flexneri/imunologia , Shigella sonnei/imunologia , Antígenos de Bactérias/genética , Antígenos de Superfície/genética , Vacinas Bacterianas , Membrana Celular/imunologia , Membrana Celular/ultraestrutura , Disenteria Bacilar/prevenção & controle , Proteínas de Membrana/imunologia , Proteínas Periplásmicas/imunologia , Shigella flexneri/ultraestrutura , Shigella sonnei/ultraestrutura
9.
Proc Natl Acad Sci U S A ; 110(47): 19077-82, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24191022

RESUMO

Neisseria meningitidis is a major cause of bacterial meningitis worldwide, especially in the African meningitis belt, and has a high associated mortality. The meningococcal serogroups A, W, and X have been responsible for epidemics and almost all cases of meningococcal meningitis in the meningitis belt over the past 12 y. Currently no vaccine is available against meningococcal X (MenX). Because the development of a new vaccine through to licensure takes many years, this leaves Africa vulnerable to new epidemics of MenX meningitis at a time when the epidemiology of meningococcal meningitis on the continent is changing rapidly, following the recent introduction of a glycoconjugate vaccine against serogroup A. Here, we report the development of candidate glycoconjugate vaccines against MenX and preclinical data from their use in animal studies. Following optimization of growth conditions of our seed MenX strain for polysaccharide (PS) production, a scalable purification process was developed yielding high amounts of pure MenX PS. Different glycoconjugates were synthesized by coupling MenX oligosaccharides of varying chain length to CRM197 as carrier protein. Analytical methods were developed for in-process control and determination of purity and consistency of the vaccines. All conjugates induced high anti-MenX PS IgG titers in mice. Antibodies were strongly bactericidal against African MenX isolates. These findings support the further development of glycoconjugate vaccines against MenX and their assessment in clinical trials to produce a vaccine against the one cause of epidemic meningococcal meningitis that currently cannot be prevented by available vaccines.


Assuntos
Surtos de Doenças/prevenção & controle , Glicoconjugados/biossíntese , Meningite Meningocócica/epidemiologia , Meningite Meningocócica/prevenção & controle , Vacinas Meningocócicas/biossíntese , Neisseria meningitidis/genética , África Subsaariana/epidemiologia , Animais , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Glicoconjugados/imunologia , Humanos , Espectroscopia de Ressonância Magnética , Meningite Meningocócica/imunologia , Vacinas Meningocócicas/imunologia , Camundongos , Neisseria meningitidis/metabolismo , Polissacarídeos Bacterianos/isolamento & purificação , Polissacarídeos Bacterianos/metabolismo
10.
J Biol Chem ; 289(36): 24922-35, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25023285

RESUMO

Outer membrane particles from Gram-negative bacteria are attractive vaccine candidates as they present surface antigens in their natural context. We previously developed a high yield production process for genetically derived particles, called generalized modules for membrane antigens (GMMA), from Shigella. As GMMA are derived from the outer membrane, they contain immunostimulatory components, especially lipopolysaccharide (LPS). We examined ways of reducing their reactogenicity by modifying lipid A, the endotoxic part of LPS, through deletion of late acyltransferase genes, msbB or htrB, in GMMA-producing Shigella sonnei and Shigella flexneri strains. GMMA with resulting penta-acylated lipid A from the msbB mutants showed a 600-fold reduced ability, and GMMA from the S. sonnei ΔhtrB mutant showed a 60,000-fold reduced ability compared with GMMA with wild-type lipid A to stimulate human Toll-like receptor 4 (TLR4) in a reporter cell line. In human peripheral blood mononuclear cells, GMMA with penta-acylated lipid A showed a marked reduction in induction of inflammatory cytokines (S. sonnei ΔhtrB, 800-fold; ΔmsbB mutants, 300-fold). We found that the residual activity of these GMMA is largely due to non-lipid A-related TLR2 activation. In contrast, in the S. flexneri ΔhtrB mutant, a compensatory lipid A palmitoleoylation resulted in GMMA with hexa-acylated lipid A with ∼10-fold higher activity to stimulate peripheral blood mononuclear cells than GMMA with penta-acylated lipid A, mostly due to retained TLR4 activity. Thus, for use as vaccines, GMMA will likely require lipid A penta-acylation. The results identify the relative contributions of TLR4 and TLR2 activation by GMMA, which need to be taken into consideration for GMMA vaccine development.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Lipídeo A/imunologia , Shigella/imunologia , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia , Acilação/imunologia , Aciltransferases/genética , Aciltransferases/metabolismo , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Eletroforese em Gel de Poliacrilamida , Células HEK293 , Humanos , Lipídeo A/análise , Lipídeo A/metabolismo , Microscopia Eletrônica de Transmissão , Monócitos/imunologia , Monócitos/metabolismo , Mutação , Shigella/genética , Shigella/metabolismo , Shigella flexneri/genética , Shigella flexneri/imunologia , Shigella flexneri/metabolismo , Shigella sonnei/genética , Shigella sonnei/imunologia , Shigella sonnei/metabolismo , Transdução de Sinais/imunologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
11.
Infect Immun ; 83(9): 3722-31, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26169269

RESUMO

Nontyphoidal Salmonella (NTS), particularly Salmonella enterica serovars Typhimurium and Enteritidis, is responsible for a major global burden of invasive disease with high associated case-fatality rates. We recently reported the development of a candidate O-antigen-CRM197 glycoconjugate vaccine against S. Typhimurium. Here, using a panel of mouse monoclonal antibodies generated by the vaccine, we examined the relative efficiency of different antibody isotypes specific for the O:4 antigen of S. Typhimurium to effect in vitro and in vivo killing of the invasive African S. Typhimurium strain D23580. All O:4-specific antibody isotypes could mediate cell-free killing and phagocytosis of S. Typhimurium by mouse blood cells. Opsonization of Salmonella with O:4-specific IgA, IgG1, IgG2a, and IgG2b, but not IgM, resulted in cell-dependent bacterial killing. At high concentrations, O:4-specific antibodies inhibited both cell-free complement-mediated and cell-dependent opsonophagocytic killing of S. Typhimurium in vitro. Using passive immunization in mice, the O:4-specific antibodies provided in vivo functional activity by decreasing the bacterial load in the blood and tissues, with IgG2a and IgG2b being the most effective isotypes. In conclusion, an O-antigen-CRM197 glycoconjugate vaccine can induce O-antigen-specific antibodies of different isotypes that exert in vitro and in vivo killing of S. Typhimurium.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos O/imunologia , Vacinas contra Salmonella/imunologia , Salmonella enterica/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Isotipos de Imunoglobulinas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Salmonella/imunologia
12.
Bioconjug Chem ; 26(12): 2507-13, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26549104

RESUMO

A solid-phase conjugation method was developed and applied to the synthesis of an O-antigen based glycoconjugate vaccine against Salmonella Typhimurium, with CRM197 as the carrier protein. Copper-free click chemistry was used as the conjugation chemistry, after derivatizing the sugar and the protein components with alkyne and azido linkers, respectively. This chemistry has the advantage of not deactivating functional groups during the conjugation step, thereby allowing the recycling of unreacted components. The activated carrier protein was adsorbed to an anion exchange matrix and quantitatively conjugated to the O-antigen. The resulting conjugate was eluted from the resin free of unconjugated sugar which was previously removed by simple washing steps. Unreacted O-antigen was recycled by addition to a new batch of resin-CRM197 resulting in further quantitative protein conjugation. This process has advantages in relation to reduction of costs for production of conjugate vaccines, allowing unreacted sugar recovery and simplifying the purification of the glycoconjugate.


Assuntos
Química Click/métodos , Glicoconjugados/química , Antígenos O/química , Salmonella typhimurium/química , Técnicas de Síntese em Fase Sólida/métodos , Vacinas Conjugadas/química , Proteínas de Bactérias/química , Humanos , Modelos Moleculares , Infecções por Salmonella/microbiologia , Infecções por Salmonella/prevenção & controle
14.
Angew Chem Int Ed Engl ; 54(45): 13198-203, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26350581

RESUMO

A series of glycoconjugates with defined connectivity were synthesized to investigate the impact of coupling Salmonella typhimurium O-antigen to different amino acids of CRM197 protein carrier. In particular, two novel methods for site-selective glycan conjugation were developed to obtain conjugates with single attachment site on the protein, based on chemical modification of a disulfide bond and pH-controlled transglutaminase-catalyzed modification of lysine, respectively. Importantly, conjugation at the C186-201 bond resulted in significantly higher anti O-antigen bactericidal antibody titers than coupling to K37/39, and in comparable titers to conjugates bearing a larger number of saccharides. This study demonstrates that the conjugation site plays a role in determining the immunogenicity in mice and one single attachment point may be sufficient to induce high levels of bactericidal antibodies.


Assuntos
Glicoconjugados/química , Glicoconjugados/imunologia , Antígenos O/química , Antígenos O/imunologia , Vacinas contra Salmonella/química , Vacinas contra Salmonella/imunologia , Salmonella typhimurium/imunologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Conformação Molecular , Salmonella typhimurium/química
15.
Microb Pathog ; 63: 19-23, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23756206

RESUMO

Nontyphoidal Salmonella are a major and emerging cause of fatal invasive disease in Africa, and are genetically distinct from those found elsewhere in the world. Understanding the targets of protective immunity to these African Salmonellae is key to vaccine development. We immunized mice and rabbits with heat-inactivated wild-type African invasive Salmonella Typhimurium D23580 and rough mutants lacking O-antigen. Wild-type Salmonella, unlike rough bacteria, induced a large bactericidal antibody response mainly against O-antigen. Bactericidal ability of anti-O-antigen antibodies was confirmed following purification by affinity chromatography. The current findings support the development of an O-antigen conjugate vaccine against invasive nontyphoidal Salmonellae for Africa.


Assuntos
Anticorpos Antibacterianos/sangue , Atividade Bactericida do Sangue , Antígenos O/imunologia , Infecções por Salmonella/imunologia , Infecções por Salmonella/microbiologia , Vacinas contra Salmonella/imunologia , Salmonella typhimurium/imunologia , Animais , Humanos , Camundongos , Coelhos , Vacinas contra Salmonella/administração & dosagem , Salmonella typhimurium/isolamento & purificação , Vacinação/métodos
16.
Microbiol Spectr ; 11(3): e0359422, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37036352

RESUMO

The autotransporter protein secretion system has been used previously to target the secretion of heterologous proteins to the bacterial cell surface and the extracellular milieu at the laboratory scale. The platform is of particular interest for the production of "difficult" recombinant proteins that might cause toxic effects when produced intracellularly. One such protein is IrmA. IrmA is a vaccine candidate that is produced in inclusion bodies requiring refolding. Here, we describe the use and scale-up of the autotransporter system for the secretion of an industrially relevant protein (IrmA). A plasmid expressing IrmA was constructed such that the autotransporter platform could secrete IrmA into the culture supernatant fraction. The autotransporter platform was suitable for the production and purification of IrmA with comparable physical properties to the protein produced in the cytoplasm. The production of IrmA was translated to scale-up protein production conditions resulting in a yield of 29.3 mg/L of IrmA from the culture supernatant, which is consistent with yields of current industrial processes. IMPORTANCE Recombinant protein production is an essential component of the biotechnology sector. Here, we show that the autotransporter platform is a viable method for the recombinant production, secretion, and purification of a "difficult" to produce protein on an industrially relevant scale. Use of the autotransporter platform could reduce the number of downstream processing operations required, thus accelerating the development time and reducing costs for recombinant protein production.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Sistemas de Secreção Tipo V/genética , Sistemas de Secreção Tipo V/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Membrana Celular/metabolismo
17.
J Exp Med ; 203(5): 1249-58, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16636134

RESUMO

There is a remarkable heterogeneity in the functional profile (quality) of T cell responses. Importantly, the magnitude and/or quality of a response required for protection may be different depending on the infection. Here, we assessed the capacity of different Toll like receptor (TLR)-binding compounds to influence T helper cell (Th)1 and CD8+ T cell responses when used as adjuvants in nonhuman primates (NHP) with HIV Gag as a model antigen. NHP were immunized with HIV Gag protein emulsified in Montanide ISA 51, an oil-based adjuvant, with or without a TLR7/8 agonist, a TLR8 agonist, or the TLR9 ligand cytosine phosphate guanosine oligodeoxynucleotides (CpG ODN), and boosted 12 wk later with a replication-defective adenovirus-expressing HIV-Gag (rAD-Gag). Animals vaccinated with HIV Gag protein/Montanide and CpG ODN or the TLR7/8 agonist had higher frequencies of Th1 responses after primary immunization compared to all other vaccine groups. Although the rAD-Gag boost did not elevate the frequency of Th1 memory cytokine responses, there was a striking increase in HIV Gag-specific CD8+ T cell responses after the boost in all animals that had received a primary immunization with any of the TLR adjuvants. Importantly, the presence and type of TLR adjuvant used during primary immunization conferred stability and dramatically influenced the magnitude and quality of the Th1 and CD8+ T cell responses after the rAD-Gag boost. These data provide insights for designing prime-boost immunization regimens to optimize Th1 and CD8+ T cell responses.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Memória Imunológica/efeitos dos fármacos , Manitol/análogos & derivados , Ácidos Oleicos/administração & dosagem , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas , Animais , Linfócitos T CD8-Positivos/imunologia , Ilhas de CpG/imunologia , Citocinas/imunologia , Produtos do Gene gag/administração & dosagem , Produtos do Gene gag/imunologia , Imunização , Macaca mulatta , Manitol/administração & dosagem , Manitol/imunologia , Ácidos Oleicos/imunologia , Oligodesoxirribonucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/imunologia , Células Th1/imunologia , Receptor 7 Toll-Like/imunologia , Receptor 8 Toll-Like/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia
18.
Nat Struct Mol Biol ; 13(1): 90-1, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16327807

RESUMO

P25 and P28 proteins are essential for Plasmodium parasites to infect mosquitoes and are leading candidates for a transmission-blocking malaria vaccine. The Plasmodium vivax P25 is a triangular prism that could tile the parasite surface. The residues forming the triangle are conserved in P25 and P28 from all Plasmodium species. A cocrystal structure shows that a transmission-blocking antibody uses only its heavy chain to bind Pvs25 at a vertex of the triangle.


Assuntos
Antígenos de Protozoários/química , Antígenos de Protozoários/metabolismo , Antígenos de Superfície/química , Antígenos de Superfície/metabolismo , Culicidae/parasitologia , Vacinas Antimaláricas/química , Vacinas Antimaláricas/metabolismo , Plasmodium vivax/química , Plasmodium vivax/crescimento & desenvolvimento , Animais , Modelos Moleculares , Plasmodium vivax/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
19.
PLoS Negl Trop Dis ; 15(10): e0009826, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34644291

RESUMO

No vaccine to protect against an estimated 238,000 shigellosis deaths per year is widely available. S. sonnei is the most prevalent Shigella, and multiple serotypes of S. flexneri, which change regionally and globally, also cause significant disease. The leading Shigella vaccine strategies are based on the delivery of serotype specific O-antigens. A strategy to minimize the complexity of a broadly-protective Shigella vaccine is to combine components from S. sonnei with S. flexneri serotypes that induce antibodies with maximum cross-reactivity between different serotypes. We used the GMMA-technology to immunize animal models and generate antisera against 14 S. flexneri subtypes from 8 different serotypes that were tested for binding to and bactericidal activity against a panel of 11 S. flexneri bacteria lines. Some immunogens induced broadly cross-reactive antibodies that interacted with most of the S. flexneri in the panel, while others induced antibodies with narrower specificity. Most cross-reactivity could not be assigned to modifications of the O-antigen, by glucose, acetate or phosphoethanolamine, common to several of the S. flexneri serotypes. This allowed us to revisit the current dogma of cross-reactivity among S. flexneri serotypes suggesting that a broadly protective vaccine is feasible with limited number of appropriately selected components. Thus, we rationally designed a 4-component vaccine selecting GMMA from S. sonnei and S. flexneri 1b, 2a and 3a. The resulting formulation was broadly cross-reactive in mice and rabbits, inducing antibodies that killed all S. flexneri serotypes tested. This study provides the framework for a broadly-protective Shigella vaccine which needs to be verified in human trials.


Assuntos
Anticorpos Antibacterianos/imunologia , Vacinas contra Shigella/imunologia , Shigella flexneri/imunologia , Animais , Reações Cruzadas , Disenteria Bacilar/imunologia , Disenteria Bacilar/microbiologia , Disenteria Bacilar/prevenção & controle , Feminino , Humanos , Camundongos , Antígenos O/administração & dosagem , Antígenos O/genética , Antígenos O/imunologia , Coelhos , Sorogrupo , Vacinas contra Shigella/administração & dosagem , Vacinas contra Shigella/genética , Shigella flexneri/classificação , Shigella flexneri/genética , Shigella sonnei/genética , Shigella sonnei/imunologia
20.
PLoS One ; 16(7): e0253510, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34288910

RESUMO

BACKGROUND: Whilst evidence of use of face masks in reducing COVID-19 cases is increasing, the impact of mandatory use across a large population has been difficult to assess. Introduction of mandatory mask use on July 22, 2020 during a resurgence of COVID-19 in Melbourne, Australia created a situation that facilitated an assessment of the impact of the policy on the epidemic growth rate as its introduction occurred in the absence of other changes to restrictions. METHODS AND FINDINGS: Exponential epidemic growth or decay rates in daily COVID-19 diagnoses were estimated using a non-weighted linear regression of the natural logarithm of the daily cases against time, using a linear spline model with one knot (lspline package in R v 3.6.3). The model's two linear segments pivot around the hinge day, on which the mask policy began to take effect, 8 days following the introduction of the policy. We used two forms of data to assess change in mask usage: images of people wearing masks in public places obtained from a major media outlet and population-based survey data. Potential confounding factors (including daily COVID-19 tests, number of COVID-19 cases among population subsets affected differentially by the mask policy-e.g., healthcare workers) were examined for their impact on the results. Daily cases fitted an exponential growth in the first log-linear segment (k = +0.042, s.e. = 0.007), and fitted an exponential decay in the second (k = -0.023, s.e. = 0.017) log-linear segment. Over a range of reported serial intervals for SARS-CoV-2 infection, these growth rates correspond to a 22-33% reduction in an effective reproduction ratio before and after mandatory mask use. Analysis of images of people in public spaces showed mask usage rose from approximately 43% to 97%. Analysis of survey data found that on the third day before policy introduction, 44% of participants reported "often" or "always" wearing a mask; on the fourth day after, 100% reported "always" doing so. No potentially confounding factors were associated with the observed change in growth rates. CONCLUSIONS: The mandatory mask use policy substantially increased public use of masks and was associated with a significant decline in new COVID-19 cases after introduction of the policy. This study strongly supports the use of masks for controlling epidemics in the broader community.


Assuntos
COVID-19/epidemiologia , COVID-19/prevenção & controle , Máscaras/estatística & dados numéricos , Políticas , Austrália/epidemiologia , Cidades/epidemiologia , Comportamentos Relacionados com a Saúde , Humanos , Análise Multivariada , Pandemias/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA