Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(1): 101-113, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37994785

RESUMO

Post-translational modifications (PTMs) of histones have fundamental effects on chromatin structure and function. While the impact of PTMs on the function of core histones are increasingly well understood, this is much less the case for modifications of linker histone H1, which is at least in part due to a lack of proper tools. In this work, we establish the assembly of intact chromatosomes containing site-specifically ubiquitylated and acetylated linker histone H1.2 variants obtained by a combination of chemical biology approaches. We then use these complexes in a tailored affinity enrichment mass spectrometry workflow to identify and comprehensively characterize chromatosome-specific cellular interactomes and the impact of site-specific linker histone modifications on a proteome-wide scale. We validate and benchmark our approach by western-blotting and by confirming the involvement of chromatin-bound H1.2 in the recruitment of proteins involved in DNA double-strand break repair using an in vitro ligation assay. We relate our data to previous work and in particular compare it to data on modification-specific interaction partners of free H1. Taken together, our data supports the role of chromatin-bound H1 as a regulatory protein with distinct functions beyond DNA compaction and constitutes an important resource for future investigations of histone epigenetic modifications.


Assuntos
Cromatina , Histonas , Espectrometria de Massas , Humanos , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , DNA/química , Reparo do DNA , Histonas/metabolismo , Nucleossomos , Processamento de Proteína Pós-Traducional , Espectrometria de Massas/métodos
2.
Angew Chem Int Ed Engl ; 62(8): e202213279, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36524454

RESUMO

Diadenosine polyphosphates (Apn As) are non-canonical nucleotides whose cellular concentrations increase during stress and are therefore termed alarmones, signaling homeostatic imbalance. Their cellular role is poorly understood. In this work, we assessed Apn As for their usage as cosubstrates for protein AMPylation, a post-translational modification in which adenosine monophosphate (AMP) is transferred to proteins. In humans, AMPylation mediated by the AMPylator FICD with ATP as a cosubstrate is a response to ER stress. Herein, we demonstrate that Ap4 A is proficiently consumed for AMPylation by FICD. By chemical proteomics using a new chemical probe, we identified new potential AMPylation targets. Interestingly, we found that AMPylation targets of FICD may differ depending on the nucleotide cosubstrate. These results may suggest that signaling at elevated Ap4 A levels during cellular stress differs from when Ap4 A is present at low concentrations, allowing response to extracellular cues.


Assuntos
Guanosina Pentafosfato , Proteínas , Humanos , Guanosina Pentafosfato/metabolismo , Proteínas/metabolismo , Monofosfato de Adenosina/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Processamento de Proteína Pós-Traducional
3.
Nat Commun ; 14(1): 842, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792600

RESUMO

RNA ligases are present across all forms of life. While enzymatic RNA ligation between 5'-PO4 and 3'-OH termini is prevalent in viruses, fungi, and plants, such RNA ligases are yet to be identified in vertebrates. Here, using a nucleotide-based chemical probe targeting human AMPylated proteome, we have enriched and identified the hitherto uncharacterised human protein chromosome 12 open reading frame 29 (C12orf29) as a human enzyme promoting RNA ligation between 5'-PO4 and 3'-OH termini. C12orf29 catalyses ATP-dependent RNA ligation via a three-step mechanism, involving tandem auto- and RNA AMPylation. Knock-out of C12ORF29 gene impedes the cellular resilience to oxidative stress featuring concurrent RNA degradation, which suggests a role of C12orf29 in maintaining RNA integrity. These data provide the groundwork for establishing a human RNA repair pathway.


Assuntos
RNA Ligase (ATP) , RNA , Animais , Humanos , RNA Ligase (ATP)/genética , RNA Ligase (ATP)/metabolismo , RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA