RESUMO
The incidence of spotted fever group (SFG) rickettsioses in the United States has tripled since 2010. Rocky Mountain spotted fever, the most severe SFG rickettsiosis, is caused by Rickettsia rickettsii. The lack of species-specific confirmatory testing obfuscates the relative contribution of R. rickettsii and other SFG Rickettsia to this increase. We report a newly recognized rickettsial pathogen, Rickettsia sp. CA6269, as the cause of severe Rocky Mountain spotted fever-like illness in 2 case-patients residing in northern California. Multilocus sequence typing supported the recognition of this pathogen as a novel Rickettsia genotype most closely related to R. rickettsii. Cross-reactivity observed for an established molecular diagnostic test indicated that Rickettsia sp. CA6269 might be misidentified as R. rickettsii. We developed a Rickettsia sp. CA6269-specific real-time PCR to help resolve this diagnostic challenge and better characterize the spectrum of clinical disease and ecologic epidemiology of this pathogen.
Assuntos
Tipagem de Sequências Multilocus , Filogenia , Rickettsia , Febre Maculosa das Montanhas Rochosas , Humanos , California/epidemiologia , Febre Maculosa das Montanhas Rochosas/diagnóstico , Febre Maculosa das Montanhas Rochosas/microbiologia , Febre Maculosa das Montanhas Rochosas/epidemiologia , Rickettsia/genética , Rickettsia/isolamento & purificação , Rickettsia/classificação , Masculino , Feminino , Pessoa de Meia-Idade , Rickettsiose do Grupo da Febre Maculosa/diagnóstico , Rickettsiose do Grupo da Febre Maculosa/microbiologia , Rickettsiose do Grupo da Febre Maculosa/epidemiologia , Adulto , Rickettsia rickettsii/genéticaRESUMO
Infection with Borrelia miyamotoi in California, USA, has been suggested by serologic studies. We diagnosed B. miyamotoi infection in an immunocompromised man in California. Diagnosis was aided by plasma microbial cell-free DNA sequencing. We conclude that the infection was acquired in California.
Assuntos
Infecções por Borrelia , Borrelia , Ixodes , Animais , Humanos , Masculino , Borrelia/genética , Borrelia/isolamento & purificação , Infecções por Borrelia/diagnóstico , California/epidemiologia , Hospedeiro ImunocomprometidoRESUMO
The first confirmed collection of Aedes japonicus in Maine was in Cumberland County in 2001. Since that initial collection, it has been found in 7 of Maine's 16 counties between 2001 and 2015. These collections include the northernmost collection of Ae. japonicus in the eastern USA, from Madawaska in Aroostook County. Though mosquito surveillance is limited in the state, it is evident that Ae. japonicus is more widely distributed in Maine than previously believed although its role in arboviral transmission in the region is unknown.
Assuntos
Aedes/fisiologia , Distribuição Animal , Animais , Feminino , MaineRESUMO
Ixodes pacificus (the western blacklegged tick) occurs in the far western United States (US), where it commonly bites humans. This tick was not considered a species of medical concern until it was implicated in the 1980s as a vector of Lyme disease spirochetes. Later, it was discovered to also be the primary vector to humans in the far western US of agents causing anaplasmosis and hard tick relapsing fever. The core distribution of I. pacificus in the US includes California, western Oregon, and western Washington, with outlier populations reported in Utah and Arizona. In this review, we provide a history of the documented occurrence of I. pacificus in the US from the 1890s to present, and discuss associations of its geographic range with landscape, hosts, and climate. In contrast to Ixodes scapularis (the blacklegged tick) in the eastern US, there is no evidence for a dramatic change in the geographic distribution of I. pacificus over the last half-century. Field surveys in the 1930s and 1940s documented I. pacificus along the Pacific Coast from southern California to northern Washington, in the Sierra Nevada foothills, and in western Utah. County level collection records often included both immatures and adults of I. pacificus, recovered by drag sampling or from humans, domestic animals, and wildlife. The estimated geographic distribution presented for I. pacificus in 1945 by Bishopp and Trembley is similar to that presented in 2022 by the Centers for Disease Control and Prevention. There is no clear evidence of range expansion for I. pacificus, separate from tick records in new areas that could have resulted from newly initiated or intensified surveillance efforts. Moreover, there is no evidence from long-term studies that the density of questing I. pacificus ticks has increased over time in specific areas. It therefore is not surprising that the incidence of Lyme disease has remained stable in the Pacific Coast states from the early 1990s, when it became a notifiable condition, to present. We note that deforestation and deer depredation were less severe in the far western US during the 1800s and early 1900s compared to the eastern US. This likely contributed to I. pacificus maintaining stable, widespread populations across its geographic range in the far western US in the early 1900s, while I. scapularis during the same time period appears to have been restricted to a small number of geographically isolated refugia sites within its present range in the eastern US. The impact that a warming climate may have had on the geographic distribution and local abundance of I. pacificus in recent decades remains unclear.
Assuntos
Borrelia burgdorferi , Cervos , Ixodes , Doença de Lyme , Humanos , Estados Unidos/epidemiologia , Animais , Doença de Lyme/epidemiologia , WashingtonRESUMO
The western black-legged tick (Ixodes pacificus) is the most frequently identified human-biting tick species in the western United States and the principal vector of at least three recognized bacterial pathogens of humans. A potentially pathogenic Rickettsia species, first described in 1978 and recently characterized as a novel transitional group agent designated as Rickettsia tillamookensis, also exists among populations of I. pacificus, although the distribution and frequency of this agent are poorly known. We evaluated DNA extracts from 348 host-seeking I. pacificus nymphs collected from 9 locations in five California counties, and from 916 I. pacificus adults collected from 24 locations in 13 counties, by using a real-time PCR designed specifically to detect DNA of R. tillamookensis. DNA of R. tillamookensis was detected in 10 (2.9%) nymphs (95% CI: 1.6-5.2%) and 17 (1.9%) adults (95% CI: 1.2-3.0%) from 11 counties of northern California. Although site-specific infection rates varied greatly, frequencies of infection remained consistently low when aggregated by stage, sex, habitat type, or geographical region. Four novel isolates of R. tillamookensis were cultivated in Vero E6 cells from individual adult ticks collected from Alameda, Nevada, and Yolo counties. Four historical isolates, serotyped previously as 'Tillamook-like' strains over 40 yr ago, were revived from long-term storage in liquid nitrogen and confirmed subsequently by molecular methods as isolates of R. tillamookensis. The potential public health impact of R. tillamookensis requires further investigation.
Assuntos
Ixodes , Ixodidae , Rickettsia , Rickettsiaceae , Animais , California , Humanos , Ixodes/microbiologia , Ninfa/microbiologia , RickettsialesRESUMO
Condition-specific competition, when environmental conditions alter the outcome of competition, can foster the persistence of resident species after the invasion of a competitively superior invader. We test whether condition-specific competition can facilitate the areawide persistence of the resident and principal West Nile virus vector mosquito Culex pipiens with the competitively superior invasive Aedes albopictus in water from different urban container habitats. (2) Methods: We tested the effects of manipulated numbers of A. albopictus on C. pipiens' survival and development in water collected from common functional and discarded containers in Baltimore, MD, USA. The experiment was conducted with typical numbers of larvae found in field surveys of C. pipiens and A. albopictus and container water quality. (3) Results: We found increased densities of A. albopictus negatively affected the survivorship and development of C. pipiens in water from discarded containers but had little effect in water from functional containers. This finding was driven by water from trash cans, which allowed consistently higher C. pipiens' survival and development and had greater mean ammonia and nitrate concentrations that can promote microbial food than other container types. (4) Conclusions: These results suggest that the contents of different urban containers alter the effects of invasive A. albopictus competition on resident C. pipiens, that trash cans, in particular, facilitate the persistence of C. pipiens, and that there could be implications for West Nile virus risk as a result.