Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Chem Phys ; 158(13): 134707, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37031154

RESUMO

Room temperature ionic liquids (RT-ILs) are promising electrolytes for electrocatalysis. Understanding the effects of the electrode-electrolyte interface structure on electrocatalysis in RT-ILs is important. Ultrafast mass transport of redox species in N-methyl-N-ethyl-pyrrolidinium polybromide (MEPBr2n+1) enabled evaluation of the reorganization energy (λ), which reflects the solvation structure in the inner Helmholtz plane (IHP). λ was achieved by fitting the electron transfer rate-limited voltammogram at a Pt ultramicroelectrode (UME) to the Marcus-Hush-Chidsey model for heterogeneous electron transfer kinetics. However, it is time-consuming or even impossible to prepare electrode materials, including alloys of numerous compositions in the form of UME, for each experiment. Herein, we report a method to evaluate the λ of MEPBr2n+1 by scanning electrochemical cell microscopy (SECCM), which allows high throughput electrochemical measurements using a single electrode with high spatial resolution. Fast mass transport in the nanosized SECCM tip is critical for achieving heterogeneous electron transfer-limited voltammograms. Furthermore, investigating λ on a high-entropy alloy materials library composed of Pt, Pd, Ru, Ir, and Ag suggests a negative correlation between λ and the work function. Given that the potential of zero charge correlates with the work function of electrodes, this can be attributed to the surface-charge sensitive ionic structure in the IHP of MEPBr2n+1, modulating the solvation energy of the redox-active species in the IHP.

2.
Angew Chem Int Ed Engl ; 62(39): e202310069, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37537136

RESUMO

The vast possibilities in the elemental combinations of high-entropy alloys (HEAs) make it essential to discover activity descriptors for establishing rational electrocatalyst design principles. Despite the increasing attention on the potential of zero charge (PZC) of hydrogen evolution reaction (HER) electrocatalyst, neither the PZC of HEAs nor the impact of the PZC on the HER activity at HEAs has been described. Here, we use scanning electrochemical cell microscopy (SECCM) to determine the PZC and the HER activities of various elemental compositions of a Pt-Pd-Ru-Ir-Ag thin-film HEA materials library (HEA-ML) with high statistical reliability. Interestingly, the PZC of Pt-Pd-Ru-Ir-Ag is linearly correlated with its composition-weighted average work function. The HER current density in acidic media positively correlates with the PZC, which can be explained by the preconcentration of H+ in the electrical double layer at potentials negative of the PZC.

3.
Angew Chem Int Ed Engl ; 60(45): 24144-24152, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34506069

RESUMO

Active, selective and stable catalysts are imperative for sustainable energy conversion, and engineering materials with such properties are highly desired. High-entropy alloys (HEAs) offer a vast compositional space for tuning such properties. Too vast, however, to traverse without the proper tools. Here, we report the use of Bayesian optimization on a model based on density functional theory (DFT) to predict the most active compositions for the electrochemical oxygen reduction reaction (ORR) with the least possible number of sampled compositions for the two HEAs Ag-Ir-Pd-Pt-Ru and Ir-Pd-Pt-Rh-Ru. The discovered optima are then scrutinized with DFT and subjected to experimental validation where optimal catalytic activities are verified for Ag-Pd, Ir-Pt, and Pd-Ru binary alloys. This study offers insight into the number of experiments needed for optimizing the vast compositional space of multimetallic alloys which has been determined to be on the order of 50 for ORR on these HEAs.

4.
Angew Chem Int Ed Engl ; 60(13): 6932-6937, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33372334

RESUMO

Complex solid solutions ("high entropy alloys"), comprising five or more principal elements, promise a paradigm change in electrocatalysis due to the availability of millions of different active sites with unique arrangements of multiple elements directly neighbouring a binding site. Thus, strong electronic and geometric effects are induced, which are known as effective tools to tune activity. With the example of the oxygen reduction reaction, we show that by utilising a data-driven discovery cycle, the multidimensionality challenge raised by this catalyst class can be mastered. Iteratively refined computational models predict activity trends around which continuous composition-spread thin-film libraries are synthesised. High-throughput characterisation datasets are then used as input for refinement of the model. The refined model correctly predicts activity maxima of the exemplary model system Ag-Ir-Pd-Pt-Ru. The method can identify optimal complex-solid-solution materials for electrocatalytic reactions in an unprecedented manner.

5.
Angew Chem Int Ed Engl ; 59(14): 5844-5850, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-31867829

RESUMO

Complex solid-solution electrocatalysts (also referred to as high-entropy alloy) are gaining increasing interest owing to their promising properties which were only recently discovered. With the capability of forming complex single-phase solid solutions from five or more constituents, they offer unique capabilities of fine-tuning adsorption energies. However, the elemental complexity within the crystal structure and its effect on electrocatalytic properties is poorly understood. We discuss how addition or replacement of elements affect the adsorption energy distribution pattern and how this impacts the shape and activity of catalytic response curves. We highlight the implications of these conceptual findings on improved screening of new catalyst configurations and illustrate this strategy based on the discovery and experimental evaluation of several highly active complex solid solution nanoparticle catalysts for the oxygen reduction reaction in alkaline media.

6.
Nanotechnology ; 27(49): 495604, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27834309

RESUMO

Ti-Ta alloys are attractive materials for applications in actuators as well as biomedical implants. When fabricated as thin films, these alloys can potentially be employed as microactuators, components for micro-implantable devices and coatings on surgical implants. In this study, Ti100-x Ta x (x = 21, 30) nanocolumnar thin films are fabricated by glancing angle deposition (GLAD) at room temperature using Ti73Ta27 and Ta sputter targets. Crystal structure, morphology and microstructure of the nanostructured thin films are systematically investigated by XRD, SEM and TEM, respectively. Nanocolumns of ∼150-160 nm in width are oriented perpendicular to the substrate for both Ti79Ta21 and Ti70Ta30 compositions. The disordered α″ martensite phase with orthorhombic structure is formed in room temperature as-deposited thin films. The columns are found to be elongated small single crystals which are aligned perpendicular to the [Formula: see text] and [Formula: see text] planes of α″ martensite, indicating that the films' growth orientation is mainly dominated by these crystallographic planes. Laser pre-patterned substrates are utilized to obtain periodic nanocolumnar arrays. The differences in seed pattern, and inter-seed distances lead to growth of multi-level porous nanostructures. Using a unique sputter deposition geometry consisting of Ti73Ta27 and Ta sputter sources, a nanocolumnar Ti-Ta materials library was fabricated on a static substrate by a co-deposition process (combinatorial-GLAD approach). In this library, a composition spread developed between Ti72.8Ta27.2 and Ti64.4Ta35.6, as confirmed by high-throughput EDX analysis. The morphology over the materials library varies from well-isolated nanocolumns to fan-like nanocolumnar structures. The influence of two sputter sources is investigated by studying the resulting column angle on the materials library. The presented nanostructuring methods including the use of the GLAD technique along with pre-patterning and a combinatorial materials library fabrication strategy offer a promising technological approach for investigating Ti-Ta thin films for a range of applications. The proposed approaches can be similarly implemented for other materials systems which can benefit from the formation of a nanocolumnar morphology.

7.
Sci Technol Adv Mater ; 15(1): 015006, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27877648

RESUMO

A ternary thin film combinatorial materials library of the valve metal system Hf-Ta-Ti obtained by co-sputtering was studied. The microstructural and crystallographic analysis of the obtained compositions revealed a crystalline and textured surface, with the exception of compositions with Ta concentration above 48 at.% which are amorphous and show a flat surface. Electrochemical anodization of the composition spread thin films was used for analysing the growth of the mixed surface oxides. Oxide formation factors, obtained from the potentiodynamic anodization curves, as well as the dielectric constants and electrical resistances, obtained from electrochemical impedance spectroscopy, were mapped along two dimensions of the library using a scanning droplet cell microscope. The semiconducting properties of the anodic oxides were mapped using Mott-Schottky analysis. The degree of oxide mixing was analysed qualitatively using x-ray photoelectron spectroscopy depth profiling. A quantitative analysis of the surface oxides was performed and correlated to the as-deposited metal thin film compositions. In the concurrent transport of the three metal cations during oxide growth a clear speed order of Ti > Hf > Ta was proven.

8.
Small Methods ; 8(7): e2301284, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38155148

RESUMO

High-entropy alloys (HEAs), especially in the form of compositional complex solid solutions (CCSS), have gained attention in the field of electrocatalysis. However, exploring their vast composition space concerning their electrocatalytic properties imposes significant challenges. Scanning electrochemical cell microscopy (SECCM) offers high-speed electrochemical analysis on surface areas with a lateral resolution down to tens of nm. However, high-precision piezo positioners often used for the motion of the tip limit the area of SECCM scans to the motion range of the piezo positioners which is typically a few tens of microns. To bridge this experimental gap, the study proposes a long-range SECCM system with a rapid gas-exchange environmental cell for high-throughput electrochemical characterization of 100 mm diameter HEA thin-film material libraries (ML) obtained by combinatorial co-sputtering. Due to the gas-liquid interface at the positioned SECCM droplet on the sample, high-throughput evaluation under industrial current density conditions becomes feasible. This allows the direct correlation between electrocatalytic activity and material composition with high statistical reliability. The multidimensional data obtained accelerates materials discovery, development, and optimization.

9.
Sci Technol Adv Mater ; 14(1): 015003, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27877561

RESUMO

We report on the stress-induced growth of Au microwires out of a surrounding Au-W matrix by selective oxidation, in view of a possible application as 'micro-Velcro'. The Au wires are extruded due to the high compressive stress in the tungsten oxide formed by oxidation of elemental W. The samples were fabricated as a thin-film materials library using combinatorial sputter deposition followed by thermal oxidation. Sizes and shapes of the Au microwires were investigated as a function of the W to Au ratio. The coherence length and stress state of the Au microwires were related to their shape and plastic deformation. Depending on the composition of the Au-W precursor, the oxidized samples showed regions with differently shaped Au microwires. The Au48W52 composition yielded wires with the maximum length to diameter ratio due to the high compressive stress in the tungsten oxide matrix. The values of wire length (35 µm) and diameter (2 µm) achieved at the Au48W52 composition are suitable for micro-Velcro applications.

10.
iScience ; 26(10): 107775, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37736046

RESUMO

High-entropy alloys are claimed to possess superior stability due to thermodynamic contributions. However, this statement mostly lies on a hypothetical basis. In this study, we use on-line inductively coupled plasma mass spectrometer to investigate the dissolution of five representative electrocatalysts in acidic and alkaline media and a wide potential window targeting the most important applications. To address both model and applied systems, we synthesized thin films and carbon-supported nanoparticles ranging from an elemental (Pt) sample to binary (PtRu), ternary (PtRuIr), quaternary (PtRuIrRh), and quinary (PtRuIrRhPd) alloy samples. For certain metals in the high-entropy alloy under alkaline conditions, lower dissolution was observed. Still, the improvement was not striking and can be rather explained by the lowered concentration of elements in the multinary alloys instead of the synergistic effects of thermodynamics. We postulate that this is because of dissolution kinetic effects, which are always present under electrocatalytic conditions, overcompensating thermodynamic contributions.

11.
Anal Chem ; 83(6): 1916-23, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21329337

RESUMO

Thin film metal oxide material libraries were prepared by sputter deposition of nanoscale Ti/Nb precursor multilayers followed by ex situ oxidation. The metal composition was varied from 6 at.% Nb to 27 at.% Nb. Additionally, thin wedge-type layers of Pt with a nominal thickness gradient from 0 to 5 nm were sputter-deposited on top of the oxides. The materials libraries were characterized with respect to metallic film composition, oxide thickness, phases, electrical conductivity, Pt thickness, and electrochemical activity for the oxygen reduction reaction (ORR). Electrochemical investigations were carried out by cyclic voltammetry using an automated scanning droplet cell. For a nominal Pt thickness >1 nm, no significant dependence of the ORR activity on the Pt thickness or the substrate composition was observed. However, below that critical thickness, a strong decrease of the surface-normalized activity in terms of reduction currents and potentials was observed. For such thin Pt layers, the conductivity of the substrate seems to have a substantial impact on the catalytic activity. Results from X-ray photoelectron spectroscopy (XPS) measurements suggest that the critical Pt thickness coincides with the transition from a continuous Pt film into isolated particles at decreasing nominal Pt thickness. In the case of isolated Pt particles, the activity of Pt decisively depends on its ability to exchange electrons with the oxide layer, and hence, a dependence on the substrate conductivity is rationalized.

12.
Sci Technol Adv Mater ; 12(5): 054208, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27877435

RESUMO

Combinatorial magnetron sputter deposition from elemental targets was used to create Fe-B composition spread type thin film materials libraries on thermally oxidized 4-in. Si wafers. The materials libraries consisting of wedge-type multilayer thin films were annealed at 500 or 700 °C to transform the multilayers into multiphase alloys. The libraries were characterized by nuclear reaction analysis, Rutherford backscattering, nanoindentation, vibrating sample magnetometry, x-ray diffraction (XRD) and transmission electron microscopy (TEM). Young's modulus and hardness values were related to the annealing parameters, structure and composition of the films. The magnetic properties of the films were improved by annealing in a H2 atmosphere, showing a more than tenfold decrease in the coercive field values in comparison to those of the vacuum-annealed films. The hardness values increased from 8 to 18 GPa when the annealing temperature was increased from 500 to 700 °C. The appearance of Fe2B phases, as revealed by XRD and TEM, had a significant effect on the mechanical properties of the films.

13.
Sci Technol Adv Mater ; 12(5): 054201, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27877428

RESUMO

A high-throughput characterization technique based on digital holography for mapping film thickness in thin-film materials libraries was developed. Digital holographic microscopy is used for fully automatic measurements of the thickness of patterned films with nanometer resolution. The method has several significant advantages over conventional stylus profilometry: it is contactless and fast, substrate bending is compensated, and the experimental setup is simple. Patterned films prepared by different combinatorial thin-film approaches were characterized to investigate and demonstrate this method. The results show that this technique is valuable for the quick, reliable and high-throughput determination of the film thickness distribution in combinatorial materials research. Importantly, it can also be applied to thin films that have been structured by shadow masking.

14.
Materials (Basel) ; 13(9)2020 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-32370218

RESUMO

Multiple principal element alloys, also often referred to as compositionally complex alloys or high entropy alloys, present extreme challenges to characterize. They show a vast, multidimensional composition space that merits detailed investigation and optimization to identify compositions and to map the composition ranges where useful properties are maintained. Combinatorial thin film material libraries are a cost-effective and efficient way to create directly comparable, controlled composition variations. Characterizing them comes with its own challenges, including the need for high-speed, automated measurements of dozens to hundreds or more compositions to be screened. By selecting an appropriate thin film morphology through predictable control of critical deposition parameters, representative measured values can be obtained with less scatter, i.e., requiring fewer measurement repetitions for each particular composition. In the present study, equiatomic CoCrFeNi was grown by magnetron sputtering in different locations in the structure zone diagram applied to multinary element alloys, followed by microstructural and morphological characterizations. Increasing the energy input to the deposition process by increased temperature and adding high-power impulse magnetron sputtering (HiPIMS) plasma generators led to denser, more homogeneous morphologies with smoother surfaces until recrystallization and grain boundary grooving began. Growth at 300 °C, even without the extra particle energy input of HiPIMS generators, led to consistently repeatable nanoindentation load-displacement curves and the resulting hardness and Young's modulus values.

15.
ACS Comb Sci ; 15(8): 401-9, 2013 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-23697925

RESUMO

A Lia(NixMnyCoz)Or cathode materials library was fabricated by combinatorial magnetron sputtering. The compositional analysis of the library was performed by a new high-throughput approach for Li-content measurement in thin films, which combines automated energy-dispersive X-ray spectroscopy, Deuteron-induced gamma emission, and Rutherford backscattering measurements. Furthermore, combining this approach with thickness measurements allows the mapping of density values of samples from the materials library. By correlating the obtained compositional data with structural data from high-throughput X-ray diffraction measurements, those compositions which show a layered (R3̅m) structure and are therefore most interesting for Li-battery applications (for cathode (positive) electrodes) can be rapidly identified. This structure was identified as being most pronounced in the compositions Li0.6(Ni0.16Mn0.35Co0.48)O2, Li0.7(Ni0.10Mn0.37Co0.51)O2, Li0.6(Ni0.23Mn0.33Co0.43)O2, Li0.3(Ni0.65Mn0.08Co0.26)O2, Li0.3(Ni0.63Mn0.08Co0.29)O2, Li0.4(Ni0.56Mn0.09Co0.34)O2, Li0.5(Ni0.45Mn0.13Co0.42)O2, and Li0.6(Ni0.34Mn0.14Co0.52)O2.


Assuntos
Fontes de Energia Elétrica , Ensaios de Triagem em Larga Escala , Compostos de Lítio/química , Estrutura Molecular , Difração de Raios X
16.
ACS Comb Sci ; 14(1): 25-30, 2012 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-22126321

RESUMO

For different areas of combinatorial materials science, it is desirable to have multiple materials libraries: especially for irreversible high-throughput studies, like, for example, corrosion resistance testing in different media or annealing of complete materials libraries at different temperatures. Therefore a new combinatorial sputter-deposition process was developed which yields 24 materials libraries in one experiment on a single substrate. It is discussed with the example of 24 Ti-Ni-Ag materials libraries. They are divided based on the composition coverage and orientation of composition gradient into two sets of 12 nearly identical materials libraries. Each materials library covers at least 30-40% of the complete ternary composition range. An acid etch test in buffered-HF solution was performed, illustrating the feasibility of our approach for destructive materials characterization. The results revealed that within the composition range of Ni < 30 at.%, the films were severely etched. The composition range which shows reversible martensitic transformations was confirmed to be outside this region. The high output of the present method makes it attractive for combinatorial studies requiring multiple materials libraries.


Assuntos
Ligas/síntese química , Técnicas de Química Combinatória/métodos , Ensaios de Triagem em Larga Escala/métodos , Bibliotecas de Moléculas Pequenas/síntese química , Ligas/química , Estudos de Viabilidade , Transição de Fase , Bibliotecas de Moléculas Pequenas/química , Propriedades de Superfície
17.
J Phys Condens Matter ; 23(26): 265501, 2011 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-21666304

RESUMO

In a previous paper (Sonntag 2010 J. Phys.: Condens. Matter 22 235501) the classical thermopower formula has been argued to be incomplete, because it only takes into account the scattering properties of the carriers, but not the temperature dependence of the electrochemical potential µ caused by variation of the carrier density and/or band edge shift with temperature T. This argument is now checked experimentally by high-throughput measurements of the thermopower (Seebeck coefficient) S of a-(Cr(1-x)Si(x))(1-y)O(y) thin film materials libraries. The concentration dependences of S differ depending on whether the measurements are done with the complete film (where x ranges continuously from x≈0.3 to 0.8; y≈0.1-0.2) or with the separated pieces (each piece with another average value of x). These differences are especially large if, in addition, an oxygen gradient is present.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA