Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Anal Chem ; 96(1): 256-264, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38115687

RESUMO

The COVID-19 pandemic has shown how emerging infectious diseases could quickly affect the global health and economy. New pathogens with pandemic potential are also expected to appear soon. Moreover, the large use of antibiotics has led to the development of different so-called "superbugs" capable of escaping all of the current antibiotics. In this context, the early and cost-effective detection of pathogens is crucial to avoid the spreading of new pathogens. Here, we present molecular sensors for the recognition of a broad panel of different bacterial species. The detection is based on the use of bacteria-binding peptides (BBPs) in combination with horseradish peroxidase (HRP). We developed a reliable ELISA-like assay that permits us to study the affinity of different BBPs toward some of the most important bacterial pathogens.


Assuntos
Peptídeos Antimicrobianos , Técnicas Biossensoriais , Humanos , Pandemias , Bactérias , Peptídeos , Antibacterianos/química
2.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34021080

RESUMO

The activity of many antibiotics depends on the initial density of cells used in bacterial growth inhibition assays. This phenomenon, termed the inoculum effect, can have important consequences for the therapeutic efficacy of the drugs, because bacterial loads vary by several orders of magnitude in clinically relevant infections. Antimicrobial peptides are a promising class of molecules in the fight against drug-resistant bacteria because they act mainly by perturbing the cell membranes rather than by inhibiting intracellular targets. Here, we report a systematic characterization of the inoculum effect for this class of antibacterial compounds. Minimum inhibitory concentration values were measured for 13 peptides (including all-D enantiomers) and peptidomimetics, covering more than seven orders of magnitude in inoculated cell density. In most cases, the inoculum effect was significant for cell densities above the standard inoculum of 5 × 105 cells/mL, while for lower densities the active concentrations remained essentially constant, with values in the micromolar range. In the case of membrane-active peptides, these data can be rationalized by considering a simple model, taking into account peptide-cell association, and hypothesizing that a threshold number of cell-bound peptide molecules is required in order to cause bacterial killing. The observed effect questions the clinical utility of activity and selectivity determinations performed at a fixed, standardized cell density. A routine evaluation of the dependence of the activity of antimicrobial peptides and peptidomimetics on the inoculum should be considered.


Assuntos
Peptídeos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Antimicrobianos/química , Bactérias/patogenicidade , Infecções Bacterianas/genética , Infecções Bacterianas/microbiologia , Infecções Bacterianas/patologia , Carga Bacteriana/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Testes de Sensibilidade Microbiana , Peptidomiméticos/farmacologia , Staphylococcus aureus/patogenicidade , Estereoisomerismo
3.
Chemistry ; 23(71): 17964-17972, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-28922505

RESUMO

A simple and efficient strategy is proposed to significantly improve the antibacterial activity of peptaibols and other antimicrobial peptides by N-terminal capping with 1,2,3-triazole bearing various hydrophobic substituents on C-4. Such N-terminal insertions on alamethicin F50/5 could enhance its antimicrobial activity on Gram-positive bacteria without modification of its overall three-dimensional structure. Although the native peptide and its analogues shared comparable helical contents, the crystal structure of one of the most active derivative showed a local slight distortion of the N-terminal extremity, which was also observed in solution using NMR spectroscopy. Importantly, fluorescence studies showed that the N-capped derivatives had increased affinity for liposomes, which may indicate they interacted more strongly with the bacterial membrane than alamethicin F50/5.


Assuntos
Alameticina/análogos & derivados , Anti-Infecciosos/química , Triazóis/química , Alameticina/metabolismo , Alameticina/farmacologia , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Dicroísmo Circular , Química Click , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/química , Lipossomos/metabolismo , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Peptaibols/química , Peptaibols/metabolismo , Peptaibols/farmacologia
4.
Enzyme Microb Technol ; 168: 110257, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37209508

RESUMO

Within the last decade, the field of bio-nanoengineering has achieved significant advances allowing us to generate, e.g., nanoscaled molecular machineries with arbitrary shapes. To unleash the full potential of novel methods such as DNA origami technology, it is important to functionalise complex molecules and nanostructures precisely. Thus, considerable attention has been given to site-selective modifications of proteins allowing further incorporation of various functionalities. Here, we describe a method for the covalent attachment of oligonucleotides to the glycosylated horseradish peroxidase protein (HRP) with high N-terminus selectivity and significant yield while conserving the enzymatic activity. This two-step process includes a pH-controlled metal-free diazotransfer reaction using imidazole-1-sulfonyl azide hydrogen sulfate, which at pH 8.5 results in an N-terminal azide-functionalized protein, followed by the Cu-free click SPAAC reaction to dibenzocyclooctyne- (DBCO) modified oligonucleotides. The reaction conditions were optimised to achieve maximum yield and the best performance. The resulting protein-oligonucleotide conjugates (HRP-DNA) were characterised by electrophoresis and mass spectrometry (MS). Native-PAGE experiments demonstrated different migration patterns for HRP-DNA and the azido-modified protein allowing zymogram experiments. Structure-activity relationships of novel HRP-DNA conjugates were assessed using molecular dynamics simulations, characterising the molecular interactions that define the structural and dynamical properties of the obtained protein-oligonucleotide conjugates (POC).


Assuntos
DNA , Oligonucleotídeos , Peroxidase do Rábano Silvestre/química
5.
ACS Chem Biol ; 12(1): 52-56, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27935673

RESUMO

Host-defense peptides (HDPs) are promising compounds against multidrug-resistant microbes. In vitro, their bactericidal and toxic concentrations are significantly different, but this might be due to the use of separate assays, with different cell densities. For experiments with a single cell type, the cell-density dependence of the active concentration of the DNS-PMAP23 HDP could be predicted based on the water/cell-membrane partition equilibrium and exhibited a lower bound at low cell counts. On the basis of these data, in the simultaneous presence of both bacteria and an excess of human cells, one would expect no significant toxicity, but also inhibition of the bactericidal activity due to peptide sequestration by host cells. However, this inhibition did not take place in assays with mixed cell populations, showing that for the HDP esculentin-1a(1-21)NH2, a range of bactericidal, nontoxic concentrations exists and confirming the effective selectivity of HDPs. Mixed-cell assays might be necessary to effectively asses HDP selectivity.


Assuntos
Antibacterianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Eritrócitos/microbiologia , Infecções por Escherichia coli/metabolismo , Escherichia coli/fisiologia , Interações Hospedeiro-Patógeno , Animais , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/toxicidade , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/metabolismo , Infecções Bacterianas/microbiologia , Infecções Bacterianas/patologia , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Eritrócitos/patologia , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Hemólise/efeitos dos fármacos , Humanos , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA