Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 505(7483): 395-8, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24336199

RESUMO

River systems connect the terrestrial biosphere, the atmosphere and the ocean in the global carbon cycle. A recent estimate suggests that up to 3 petagrams of carbon per year could be emitted as carbon dioxide (CO2) from global inland waters, offsetting the carbon uptake by terrestrial ecosystems. It is generally assumed that inland waters emit carbon that has been previously fixed upstream by land plant photosynthesis, then transferred to soils, and subsequently transported downstream in run-off. But at the scale of entire drainage basins, the lateral carbon fluxes carried by small rivers upstream do not account for all of the CO2 emitted from inundated areas downstream. Three-quarters of the world's flooded land consists of temporary wetlands, but the contribution of these productive ecosystems to the inland water carbon budget has been largely overlooked. Here we show that wetlands pump large amounts of atmospheric CO2 into river waters in the floodplains of the central Amazon. Flooded forests and floating vegetation export large amounts of carbon to river waters and the dissolved CO2 can be transported dozens to hundreds of kilometres downstream before being emitted. We estimate that Amazonian wetlands export half of their gross primary production to river waters as dissolved CO2 and organic carbon, compared with only a few per cent of gross primary production exported in upland (not flooded) ecosystems. Moreover, we suggest that wetland carbon export is potentially large enough to account for at least the 0.21 petagrams of carbon emitted per year as CO2 from the central Amazon River and its floodplains. Global carbon budgets should explicitly address temporary or vegetated flooded areas, because these ecosystems combine high aerial primary production with large, fast carbon export, potentially supporting a substantial fraction of CO2 evasion from inland waters.


Assuntos
Dióxido de Carbono/análise , Rios/química , Áreas Alagadas , Atmosfera/química , Brasil , Ciclo do Carbono , Lagos/química , Plantas/metabolismo , Movimentos da Água
2.
Nature ; 487(7407): 313-9, 2012 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-22810695

RESUMO

Fertilization of the ocean by adding iron compounds has induced diatom-dominated phytoplankton blooms accompanied by considerable carbon dioxide drawdown in the ocean surface layer. However, because the fate of bloom biomass could not be adequately resolved in these experiments, the timescales of carbon sequestration from the atmosphere are uncertain. Here we report the results of a five-week experiment carried out in the closed core of a vertically coherent, mesoscale eddy of the Antarctic Circumpolar Current, during which we tracked sinking particles from the surface to the deep-sea floor. A large diatom bloom peaked in the fourth week after fertilization. This was followed by mass mortality of several diatom species that formed rapidly sinking, mucilaginous aggregates of entangled cells and chains. Taken together, multiple lines of evidence-although each with important uncertainties-lead us to conclude that at least half the bloom biomass sank far below a depth of 1,000 metres and that a substantial portion is likely to have reached the sea floor. Thus, iron-fertilized diatom blooms may sequester carbon for timescales of centuries in ocean bottom water and for longer in the sediments.


Assuntos
Sequestro de Carbono , Carbono/metabolismo , Diatomáceas/fisiologia , Ferro/metabolismo , Dióxido de Carbono/metabolismo , Diatomáceas/metabolismo , Oceanos e Mares , Fatores de Tempo
3.
Nature ; 446(7139): 1070-4, 2007 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-17460670

RESUMO

The availability of iron limits primary productivity and the associated uptake of carbon over large areas of the ocean. Iron thus plays an important role in the carbon cycle, and changes in its supply to the surface ocean may have had a significant effect on atmospheric carbon dioxide concentrations over glacial-interglacial cycles. To date, the role of iron in carbon cycling has largely been assessed using short-term iron-addition experiments. It is difficult, however, to reliably assess the magnitude of carbon export to the ocean interior using such methods, and the short observational periods preclude extrapolation of the results to longer timescales. Here we report observations of a phytoplankton bloom induced by natural iron fertilization--an approach that offers the opportunity to overcome some of the limitations of short-term experiments. We found that a large phytoplankton bloom over the Kerguelen plateau in the Southern Ocean was sustained by the supply of iron and major nutrients to surface waters from iron-rich deep water below. The efficiency of fertilization, defined as the ratio of the carbon export to the amount of iron supplied, was at least ten times higher than previous estimates from short-term blooms induced by iron-addition experiments. This result sheds new light on the effect of long-term fertilization by iron and macronutrients on carbon sequestration, suggesting that changes in iron supply from below--as invoked in some palaeoclimatic and future climate change scenarios--may have a more significant effect on atmospheric carbon dioxide concentrations than previously thought.


Assuntos
Carbono/metabolismo , Ferro/metabolismo , Fitoplâncton/metabolismo , Água do Mar/química , Atmosfera/química , Dióxido de Carbono/metabolismo , Clorofila/análise , Clorofila A , Difusão , Geografia , Oceanos e Mares , Pressão Parcial , Fatores de Tempo
4.
Mar Environ Res ; 190: 106123, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37567088

RESUMO

To gain insight into the impact of bottom-up changes in the plankton community on planktivorous fish in the context of the decline of small pelagic fisheries in the Northwestern Mediterranean Sea, we have conducted an extensive year-long study. The investigation combined biochemical analyses (proteins, carbohydrates, and lipids) with C and N stable isotope analyses (SIA) to simultaneously study phytoplankton, zooplankton, and eight planktivorous fish species (Engraulis encrasicolus, Sardina pilchardus, Sardinella aurita, Sprattus sprattus, Cepola macrophthalma, Chromis chromis, Boops boops, and Spicara maena). This study is the first to analyze both stable isotope and biochemical compositions in coastal particulate organic matter (POM) size classes (0.7-2.7 µm, 2.7-20 µm, and 20-200 µm), zooplankton size classes (200-300 µm, 300-500 µm, 500-1000 µm, 1000-2000 µm, and >2000 µm), and taxonomic groups. We demonstrated that: (1) POM stable isotope compositions varied based on its spatial origin, the taxonomic composition of its biota, and its biochemical content; (2) δ15N values increased with zooplankton size classes and groups, indicating different trophic levels; (3) Phytoplankton exhibited a lipid-rich composition (∼55%), while zooplankton and fish muscles were protein-rich (∼61% and ∼66%, respectively). Bayesian stable isotope mixing models revealed that, on average: (1) POM from oceanic waters contributed the most to the POM in the bay (>51%), with a dominance of pico-POM (∼43%); (2) The 200-1000 µm zooplankton primarily consumed nano-POM, the 1000-2000 µm zooplankton mostly consumed micro-POM (∼64%), and the >2000 µm zooplankton also mostly consumed micro-POM; (3) Mesozooplankton (200-2000 µm) constituted the main portion (∼42%) of the diet for planktivorous fish species, while macrozooplankton organisms (>2000 µm) were the primary food resource (∼43%) for both B. boops and S. sprattus. Our study underscores the complexity of the pelagic food web and highlights the bottom-up transfer of organic matter from the smallest phytoplankton size fractions to planktivorous fish.


Assuntos
Cadeia Alimentar , Fitoplâncton , Animais , Mar Mediterrâneo , Teorema de Bayes , Isótopos de Carbono/análise , Zooplâncton , Peixes/fisiologia
5.
Sci Total Environ ; 857(Pt 3): 159619, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36280086

RESUMO

Along with their important diversity, coastal ecosystems receive various amounts of nutrients, principally arising from the continent and from the related human activities (mainly industrial and agricultural activities). During the 20th century, nutrients loads have increased following the increase of both the global population and need of services. Alongside, climate change including temperature increase or atmospheric circulation change has occurred. These processes, Ecosystem state changes are hard to monitor and predict. To study the long-term changes of nutrients concentrations in coastal ecosystems, eleven French coastal ecosystems were studied over 20 years as they encompass large climatic and land pressures, representative of temperate ecosystems, over a rather small geographical area. Both univariate (time series decomposition) and multivariate (relationships between ecosystems and drivers) statistical analyses were used to determine ecosystem trajectories as well as typologies of ecosystem trajectories. It appeared that most of the French coastal ecosystems exhibited trajectories towards a decrease in nutrients concentrations. Differences in trajectories mainly depended on continental and human influences, as well as on climatic regimes. One single ecosystem exhibited very different trajectories, the Arcachon Bay with an increase in nutrients concentrations. Ecosystem trajectories based on ordination techniques were proven to be useful tools to monitor ecosystem changes. This study highlighted the importance of local environments and the need to couple uni- and multi-ecosystem studies. Although the studied ecosystems were influenced by both local and large-scale climate, by anthropogenic activities loads, and that their trajectories were mostly similar based on their continental influence, non-negligible variations resulted from their internal functioning.


Assuntos
Mudança Climática , Ecossistema , Humanos , Atividades Humanas , Nutrientes
6.
Water Res ; 170: 115287, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31812813

RESUMO

The functional diversity of two planktonic functional compartments, the nano-microphytoplankton and the mesozooplankton was used in order to better understand i) the drained marshes functioning and their related ecological functions, ii) the impacts of human control (replenishment) and human activities on the catchment basin (urbanization and catchment basin size). It was based on a monthly seasonal survey on 7 freshwater drained marshes. Both nano-microphyto- and mesozooplankton displayed high seasonal variations linked to the environmental fluctuations and human control on sea lock gates. Winter presented the lower biomasses of both compartments. Winter that is characterized by low water temperature, low light availability and high flood is actually related to the dominance of tychopelagic phytoplankton and K-strategists zooplankton. Spring and summer were characterized by i) the succession of pelagic large cells, small cells and then taxa with alternatives food strategies due to nitrogen limitation and phosphorous desorption from the sediment leading to eutrophication processes and ii) the dominance of r-strategists for mesozooplankton. The artificial summer replenishment acts positively on water quality by decreasing the eutrophication processes since the nitrogen inputs limit the proliferation of phytoplankton mixotrophs and diazotrophs and increase the ecological efficiency during the warm period. Both small and large catchment basins may lead to summer eutrophication processes in drained marshes since the largest ones imply higher hydrodynamic features at the root of large inputs of nitrogen nutrient favoring the phytoplankton development while the smallest ones exhibit hypoxia problems due to high proliferation of macrophytes. Urbanized marshes are less subjected to eutrophication during summer than non urbanized marshes due to more recurrent nutrient inputs from urban waste. However they exhibited a lower ecological efficiency. The results suggest that a better management of the hydrodynamics of such anthropogenic systems can avoid eutrophication risks on coastal areas.


Assuntos
Plâncton , Áreas Alagadas , Animais , Eutrofização , Atividades Humanas , Humanos , Fitoplâncton , Estações do Ano
7.
Sci Total Environ ; 613-614: 196-207, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28915456

RESUMO

Primary consumers play a key role in coastal ecosystems by transferring organic matter from primary producers to predators. Among them, suspension-feeders, like bivalve molluscs are widely used in trophic web studies. The main goal of this study was to investigate variations of C and N elemental and isotopic ratios in common bivalves (M. edulis, M. galloprovincialis, and C. gigas) at large spatial (i.e. among three coastal regions) and different temporal (i.e. from seasonal to multi-decadal) scales in France, in order to identify potential general or specific patterns and speculate on their drivers. The observed spatial variability was related to the trophic status of the coastal regions (oligotrophic Mediterranean Sea versus meso- to eutrophic English Channel and Atlantic ocean), but not to ecosystem typology (estuaries, versus lagoons versus bays versus littoral systems). Furthermore, it highlighted local specificities in terms of the origin of the POM assimilated by bivalves (e.g., mainly continental POM vs. marine phytoplankton vs. microphytobenthic algae). Likewise, seasonal variability was related both to the reproduction cycle for C/N ratios of Mytilus spp. and to changes in trophic resources for δ13C of species located close to river mouth. Multi-decadal evolution exhibited shifts and trends for part of the 30-year series with decreases in δ13C and δ15N. Specifically, shifts appeared in the early 2000's, likely linking bivalve isotopic ratios to a cascade of processes affected by local drivers.


Assuntos
Bivalves/química , Carbono/análise , Nitrogênio/análise , Animais , Oceano Atlântico , Isótopos de Carbono/análise , França , Mar Mediterrâneo , Isótopos de Nitrogênio/análise , Estações do Ano , Análise Espaço-Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA