Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 483: 116832, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38266872

RESUMO

Iron deficiency anemia is caused by many pathological conditions like chronic kidney disease (CKD), inflammation, malnutrition and gastrointestinal abnormality. Current treatments that are erythropoiesis stimulating agents (ESAs) and iron supplementation are inadequate and often lead to tolerance and/or toxicity. Desidustat, a prolyl hydroxylase (PHD) inhibitor, is clinically used for the treatment of anemia with CKD. In this study, we investigated the effect of desidustat on iron deficiency anemia (IDA). IDA was induced in C57BL6/J mice by iron deficient diet feeding. These mice were then treated with desidustat (15 mg/kg, PO) and FeSO4 (20 mg/kg) for five weeks and effect of the treatment on hematology, iron homeostasis, and bone marrow histology was observed. Effect of desidustat on iron metabolism in inflammation (LPS)-induced iron deficiency was also assessed. Both, Desidustat and FeSO4, increased MCV (mean corpuscular volume), MCH (mean corpuscular hemoglobin), hemoglobin, and HCT (hematocrit) in blood and increased iron in serum, liver, and spleen. Desidustat increased MCHC (mean corpuscular hemoglobin concentration) while FeSO4 treatment did not alter it. FeSO4 treatment significantly increased iron deposition in liver, and spleen, while desidustat increased iron in circulation and demonstrated efficient iron utilization. Desidustat increased iron absorption, serum iron and decreased hepcidin without altering tissue iron, while FeSO4 increased serum and tissue iron by increasing hepcidin in LPS-induced iron deficiency. Desidustat increased erythroid population, especially iron-dependent polychromatic normoblasts and orthochromatic normoblasts, while FeSO4 did not improve cell architecture. PHD inhibition by desidustat improved iron utilization in iron deficiency anemia, by efficient erythropoiesis.


Assuntos
Anemia Ferropriva , Inibidores de Prolil-Hidrolase , Quinolonas , Insuficiência Renal Crônica , Camundongos , Animais , Anemia Ferropriva/tratamento farmacológico , Hepcidinas/metabolismo , Inibidores de Prolil-Hidrolase/farmacologia , Inibidores de Prolil-Hidrolase/uso terapêutico , Lipopolissacarídeos , Ferro/metabolismo , Inflamação/metabolismo , Hemoglobinas/análise
2.
Toxicol Appl Pharmacol ; 434: 115825, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34902352

RESUMO

Dyslipidemia or its severe version like familial hypercholesterolemia causes a high risk for cardiovascular diseases. Lomitapide, a microsomal triglyceride transfer protein inhibitor, is approved to treat familial hypercholesterolemia, associated with liver fat accumulation. In this work, we investigated the effect of the combination of lomitapide and triiodothyronine (T3) in Zucker fatty rats. Lomitapide (1 mg/kg, PO), or T3 (13 µg/kg, PO), or their combination, were given to these rats once daily for fourteen days. Body weight and food intake were recorded once daily during the treatment period. Serum and hepatic lipids, glucose tolerance, serum aminotransferases, bile fluids, hepatic gene expression, and liver histology were assessed at the end of the treatment. Lomitapide treatment reduced body weight, food intake, glucose intolerance, and serum lipids, and elevated serum aminotransferases and liver lipids. When combined with T3, lomitapide showed an enhanced reduction in body weight, food intake, serum cholesterol, serum LDL, and glucose intolerance. The combination treatment increased bile flow rate and biliary cholesterol excretion rate. Combining T3 with lomitapide attenuated the elevation of serum aminotransferases and liver lipids. Hepatic ABCB11, ABCG5, ABCG8, CYP7A1, CPT1, and ACOX1 expressions were increased with combination treatment. Histological analysis indicated that T3 attenuated hepatic fat accumulation caused by lomitapide. These data suggests that combining lomitapide with T3 may reduce lomitapide-induced hepatic toxicity and provide additional benefits in obesity and glucose intolerance.


Assuntos
Benzimidazóis/toxicidade , Ácidos e Sais Biliares/metabolismo , Proteínas de Transporte/antagonistas & inibidores , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Tri-Iodotironina/farmacologia , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Ratos , Ratos Zucker
3.
Drug Dev Res ; 82(6): 852-860, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33480036

RESUMO

Chronic kidney disease (CKD) is associated with activated inflammatory responses. Desidustat, a prolyl hydroxylase (PHD) inhibitor is useful for treatment of anemia associated with CKD, but its effect on the inflammatory and fibrotic changes in CKD is not evaluated. In this study, we investigated the effect of desidustat on the inflammatory and fibrotic changes in preclinical models of acute and chronic kidney injury. Acute kidney injury was induced in male Sprague Dawley rats by ischemia-reperfusion, in which effect of desidustat (15 mg/kg, PO) was estimated. In a separate experiment, male C57 mice were treated with adenine for 14 days to induce CKD. These mice were treated with desidustat (15 mg/kg, PO, alternate day) treatment for 14 days, with adenine continued. Desidustat prevented elevation of serum creatinine, urea, IL-1ß, IL-6, and kidney injury molecule-1 (KIM-1), and elevated the erythropoietin levels in rats that were subjected to acute kidney injury. Mice treated with adenine developed CKD and anemia, and desidustat treatment caused improvement in serum creatinine, urea, and also improved hemoglobin and reduced hepatic and serum hepcidin. A significant reduction in IL-1ß, IL-6, myeloperoxidase (MPO) and oxidative stress was observed by desidustat treatment. Desidustat treatment also reduced renal fibrosis as observed by histological analysis and hydroxyproline content. Desidustat treatment reduced the renal fibrosis and inflammation along with a reduction in anemia in preclinical models of kidney injury, which may translate to protective effects in CKD patients.


Assuntos
Inibidores de Prolil-Hidrolase , Quinolonas , Traumatismo por Reperfusão , Animais , Citocinas/metabolismo , Rim , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Inibidores de Prolil-Hidrolase/farmacologia , Quinolonas/farmacologia , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/patologia
4.
Int Immunopharmacol ; 142(Pt A): 113029, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39216116

RESUMO

Autoimmune hemolytic anemia (AIHA) is a heterogeneous group of diseases mediated by autoantibody directed against RBCs causing hemolysis and anemia. AIHA develops rapidly or over time, depending on the triggering factor. Desidustat is a prolyl hydroxylase inhibitor clinically used for the treatment of chronic kidney disease (CKD)-induced anemia. In this study, we investigated the effect of desidustat in preclinical model of AIHA. We used rat RBC for induction of AIHA in mice. These mice were then treated with desidustat (15 mg/kg, PO, once a day) for eight weeks. Desidustat treatment increased hemoglobin, RBC and hematocrit and decreased WBC and lymphocytes. This treatment suppressed serum LDH, oxidative stress in RBCs, antibody titer and antibody deposition on RBC surface, and increased RBC lifespan. Serum and spleen iron along with spleen mass and oxidative stress were decreased by desidustat. Bone marrow iron was increased and expression of CD71 (cell surface marker for early erythroid progenitor) and TER-119 (cell surface marker for late erythroid progenitor) in bone marrow were found to be elevated by desidustat by treatment. This treatment also suppressed deposition of membrane-bound antibody in late erythroid cells. The treatment showed reduction in total splenic cells, CD71 and TER-119 positive cells in the spleen. Thus, desidustat treatment increased erythropoiesis, early maturation of bone marrow erythroid cells having longer RBC life span due to decrease in the antibody-mediated lysis of RBCs and its progenitors leading to reduced oxidative stress. Thus, desidustat can be a good therapeutic option for treatment of AIHA.

5.
Drug Res (Stuttg) ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38991528

RESUMO

Complement cascade is a defence mechanism useful for eliminating pathogenic microorganisms and damaged cells. However, activation of alternative complement system can also cause inflammation and promote kidney and retinal disease progression. Inflammation causes tissue hypoxia, which induces hypoxia-inducible factor (HIF) and HIF helps the body to adapt to inflammation. In this study, we investigated the effect of HIF stabilizer desidustat in complement-mediated diseases. Oral administration of desidustat (15 mg/kg) was effective to reduce the kidney injury in mice that was induced by either lipopolysaccharide (LPS), doxorubicin or bovine serum albumin (BSA)-overload. Complement activation-induced membrane attack complex (MAC) formation and factor B activity were also reduced by desidustat treatment. In addition, desidustat was effective against membranous nephropathy caused by cationic BSA and retinal degeneration induced by sodium iodate in mice. C3-deposition, proteinuria, malondialdehyde, and interleukin-1ß were decreased and superoxide dismutase was increased by desidustat treatment in cBSA-induced membranous nephropathy. Desidustat specifically inhibited alternative complement system, without affecting the lectin-, or classical complement pathway. This effect appears to be mediated by inhibition of factor B. These data demonstrate the potential therapeutic value of HIF stabilization by desidustat in treatment of complement-mediated diseases.

6.
Basic Clin Pharmacol Toxicol ; 130(1): 35-43, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34634192

RESUMO

Inhibiting the intestinal and renal neutral amino acid transporter B0AT1 by genetic means has improved insulin sensitivity in mice, but there are no antagonists available for preclinical or clinical use. Since the anti-inflammatory agent nimesulide selectively inhibited B0AT1 in vitro, we hypothesized that nimesulide exhibits in vivo potential to restrict neutral amino acid absorption and, therefore, may improve insulin sensitivity. The dose-related effect of nimesulide (10 to 100 mg/kg, PO) on intestinal absorption of neutral amino acids was estimated in C57 mice. The effect of nimesulide (50 mg/kg, PO) on renal resorption of amino acids was also assessed. The effect of chronic nimesulide (50 mg/kg, PO, BID for 14 days) was assessed in high protein diet-fed C57 mice, diet-induced obese mice and obese and diabetic db/db mice. Acute and chronic nimesulide treatment decreased absorption of neutral amino acids and increased their urinary excretion. Nimesulide treatment improved insulin sensitivity and glycemic control, increased GLP-1, decreased liver lipids and improved FGF-21 in serum. Nimesulide improved insulin sensitivity and glucose tolerance by inhibiting neutral amino acid transport in the intestine and kidneys. Thus, it can serve as a tool compound for in vivo B0AT1 inhibition.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/antagonistas & inibidores , Aminoácidos/metabolismo , Hipoglicemiantes/farmacologia , Sulfonamidas/farmacologia , Animais , Transporte Biológico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fatores de Crescimento de Fibroblastos/sangue , Hipoglicemiantes/administração & dosagem , Resistência à Insulina , Absorção Intestinal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sulfonamidas/administração & dosagem
7.
Artigo em Inglês | MEDLINE | ID: mdl-35570856

RESUMO

Many anemic chronic kidney disease (CKD) patients are refractory to erythropoietin (EPO) effects due to inflammation, deranged iron utilization, and generation of EPO antibodies. This work assessed the effect of desidustat, an inhibitor of hypoxia inducible factor (HIF) prolyl hydroxylase (PHD), on EPO-refractory renal anemia. Sprague Dawley rats were made anemic by cisplatin (5 â€‹mg/kg, IP, single dose) and turpentine oil (5 â€‹mL/kg, SC, once a week). These rats were given recombinant human EPO (rhEPO, 1 â€‹µg/kg) and desidustat (15 or 30 â€‹mg/kg) for eight weeks. Separately, rhEPO (1-5 â€‹µg/kg) was given to anemic rats to sustain the normal hemoglobin levels and desidustat (15 â€‹mg/kg) for eight weeks. In another experiment, the anemic rats were treated rhEPO (5 â€‹µg/kg) for two weeks and then desidustat (15 â€‹mg/kg) for the next two weeks. Dosing of rhEPO was thrice a week, and for desidustat, it was on alternate days. Desidustat inhibited EPO-resistance caused by rhEPO treatment, decreased hepcidin, IL-6, IL-1ß, and increased iron and liver ferroportin. Desidustat reduced EPO requirement and anti-EPO antibodies. Desidustat also maintained normal hemoglobin levels after cessation of rhEPO treatment. Thus, novel prolyl hydroxylase inhibitor desidustat can treat EPO resistance via improved iron utilization and decreased inflammation.

8.
Eur J Pharmacol ; 899: 174032, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33753107

RESUMO

Diabetic retinopathy is a serious complication of diabetes, marked by retinal vascular damage, inflammation, and angiogenesis. This study's objective was to assess the potential benefits of saroglitazar, a peroxisome proliferator-activated receptor-alpha/gamma (PPAR-α/γ) agonist in diabetic retinopathy. Diabetic retinopathy was induced by streptozotocin in Sprague Dawley rats. The effect of saroglitazar was also assessed in the oxygen-induced retinopathy model in newborn rats and VEGF-induced angiogenesis in the chick chorioallantoic membrane (CAM) assay. Treatment of saroglitazar (1 and 4 mg/kg, oral) for 12 weeks significantly ameliorated retinal vascular leakage and leukostasis in the diabetic rats. Saroglitazar decreased oxidative stress, VEGF receptor signalling, NF-κBp65, and ICAM-1 in the retina of diabetic rats. The beneficial effects of saroglitazar (1 and 4 mg/kg, oral) were also observed on the neovascularization in oxygen-induced retinopathy in newborn rats. Saroglitazar also reduced VEGF-induced angiogenesis in CAM assay. This study reveals that saroglitazar has the potential to prevent the progression of retinopathy in diabetic patients.


Assuntos
Inibidores da Angiogênese/farmacologia , Retinopatia Diabética/tratamento farmacológico , PPAR alfa/agonistas , PPAR gama/agonistas , Fenilpropionatos/farmacologia , Pirróis/farmacologia , Retina/efeitos dos fármacos , Neovascularização Retiniana/tratamento farmacológico , Vasos Retinianos/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Embrião de Galinha , Diabetes Mellitus Experimental/induzido quimicamente , Retinopatia Diabética/etiologia , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Feminino , Hiperóxia/complicações , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Neovascularização Fisiológica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , PPAR alfa/metabolismo , PPAR gama/metabolismo , Ratos Sprague-Dawley , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Retina/metabolismo , Retina/patologia , Neovascularização Retiniana/etiologia , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Transdução de Sinais , Estreptozocina , Fator de Transcrição RelA/metabolismo
9.
Drug Res (Stuttg) ; 71(9): 528-534, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34311475

RESUMO

BACKGROUND: Hepcidin, a liver-derived peptide, regulates the absorption, distribution, and circulation of iron in the body. Inflammation or iron overload stimulates hepcidin release, which causes the accumulation of iron in tissues. The inadequate levels of iron in circulation impair erythropoiesis. Inhibition of hepcidin may increase iron in circulation and improve efficient erythropoiesis. Activin-like kinase (ALK) inhibitors decrease hepcidin. METHODS: In this work, we have investigated an ALK inhibitor LDN193189 for its efficacy in iron homeostasis. The effect of LDN193189 treatment was assessed in C57BL6/J mice, in which hepcidin was induced by either ferrous sulfate or lipopolysaccharide (LPS) injection. RESULTS: After two hours of treatment, ferrous sulfate increased serum and liver iron, serum hepcidin, and liver hepcidin expression. On the other hand, LPS reduced serum iron in a dose-related manner after six hours of treatment. LDN193189 treatment increased serum iron, decreased spleen and liver iron, decreased serum hepcidin and liver hepcidin expression in ferrous sulfate-treated mice, and increased serum iron in LPS-induced hypoferremia. We observed that ferrous sulfate caused a significantly higher increase in liver iron, serum hepcidin, and liver hepcidin than turpentine oil or LPS in mice. Iron dextran (intraperitoneal or intravenous) increased serum iron, but LDN193189 did not show hyperferremia with iron dextran stimulus. CONCLUSION: Ferrous sulfate-induced hyperferremia can be a valuable and rapid screening model for assessing the efficacy of hepcidin inhibitors.


Assuntos
Hepcidinas , Lipopolissacarídeos , Animais , Compostos Ferrosos , Homeostase , Ferro , Camundongos , Camundongos Endogâmicos C57BL
10.
Drug Res (Stuttg) ; 70(8): 376-384, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32645724

RESUMO

BACKGROUND: Obesity and diabetes are major metabolic disorders that progress to severe morbidity and mortality. Neuroendocrine mechanisms controlling energy balance indicate that combination therapies are needed to sustain weight loss. Lorcaserin was one of the approved therapies for the treatment of obesity, which is recently withdrawn because a safety clinical trial, shows an increased occurrence of cancer. Coagonist of glucagon-like-peptide-1 (GLP-1) and glucagon receptors is a novel investigational therapy demonstrated to have both anti-obesity and anti-diabetic effect. Here, we investigated the effect of combination of lorcaserin and a GLP-1 and glucagon receptors coagonist in diet-induced obese (DIO) mice model. METHODS: The diet-induced obese C57BL/6J mice were used to assess acute and chronic effect of lorcaserin, coagonist of GLP-1and glucagon receptors and their combination on food intake, body weight, and biochemical parameters. RESULTS: In acute study, combination of lorcaserin and coagonist causes synergistic reductions in food intake and body weight. Repeated treatment of combination of lorcaserin and coagonist showed enhanced body weight loss over time, which is due to reduction in fat mass (subcutaneous, retroperitoneal, mesenteric and epididymal fat pad) compared to individual therapy. Also, suppression of locomotor activity seen with lorcaserin was not evident in combination with coagonist. No additive effect was observed in glucose tolerance (intraperitoneal glucose tolerance test or insulin tolerance test), serum lipids, hepatic lipids, and energy expenditure in combination group. CONCLUSION: These data suggest that combination of lorcaserin and coagonist could be a better combination to induce body weight loss.


Assuntos
Benzazepinas/farmacologia , Peptídeo 1 Semelhante ao Glucagon/agonistas , Glucagon/agonistas , Doenças Metabólicas/tratamento farmacológico , Obesidade/tratamento farmacológico , Animais , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica , Metabolismo Energético/efeitos dos fármacos , Teste de Tolerância a Glucose/métodos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Doenças Metabólicas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Receptores de Glucagon/metabolismo , Redução de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA