Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Ind Microbiol Biotechnol ; 49(2)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-34734267

RESUMO

Bioconversion of lignocellulosic resources offers an economically promising path to renewable energy. Technological challenges to achieving bioconversion include the development of cost-effective processes that render the cellulose and hemicellulose components of these resources to fermentable hexoses and pentoses. Natural bioprocessing of the hemicellulose fraction of lignocellulosic biomass requires depolymerization of methylglucuronoxylans. This requires secretion of endoxylanases that release xylooligosaccharides and aldouronates. Physiological, biochemical, and genetic studies with selected bacteria support a process in which a cell-anchored multimodular GH10 endoxylanase catalyzes release of the hydrolysis products, aldotetrauronate, xylotriose, and xylobiose, which are directly assimilated and metabolized. Gene clusters encoding intracellular enzymes, including α-glucuronidase, endoxylanase, ß-xylosidase, ABC transporter proteins, and transcriptional regulators, are coordinately responsive to substrate induction or repression. The rapid rates of glucuronoxylan utilization and microbial growth, along with the absence of detectable products of depolymerization in the medium, indicate that assimilation and depolymerization are coupled processes. Genomic comparisons provide evidence that such systems occur in xylanolytic species in several genera, including Clostridium, Geobacillus, Paenibacillus, and Thermotoga. These systems offer promise, either in their native configurations or through gene transfer to other organisms, to develop biocatalysts for efficient production of fuels and chemicals from the hemicellulose fractions of lignocellulosic resources.


Assuntos
Paenibacillus , Xilanos , Endo-1,4-beta-Xilanases/metabolismo , Família Multigênica , Regulon
2.
Infect Immun ; 89(4)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33526561

RESUMO

Helicobacter pylori encounters a wide range of pH within the human stomach. In a comparison of H. pylori cultured in vitro under neutral or acidic conditions, about 15% of genes are differentially expressed, and corresponding changes are detectable for many of the encoded proteins. The ArsRS two-component system (TCS), comprised of the sensor kinase ArsS and its cognate response regulator ArsR, has an important role in mediating pH-responsive changes in H. pylori gene expression. In this study, we sought to delineate the pH-responsive ArsRS regulon and further define the role of ArsR in pH-responsive gene expression. We compared H. pylori strains containing an intact ArsRS system with an arsS null mutant or strains containing site-specific mutations of a conserved aspartate residue (D52) in ArsR, which is phosphorylated in response to signals relayed by the cognate sensor kinase ArsS. We identified 178 genes that were pH-responsive in strains containing an intact ArsRS system but not in ΔarsS or arsR mutants. These constituents of the pH-responsive ArsRS regulon include genes involved in acid acclimatization (ureAB, amidases), oxidative stress responses (katA, sodB), transcriptional regulation related to iron or nickel homeostasis (fur, nikR), and genes encoding outer membrane proteins (including sabA, alpA, alpB, hopD [labA], and horA). When comparing H. pylori strains containing an intact ArsRS TCS with arsRS mutants, each cultured at neutral pH, relatively few genes are differentially expressed. Collectively, these data suggest that ArsRS-mediated gene regulation has an important role in H. pylori adaptation to changing pH conditions.


Assuntos
Regulação Bacteriana da Expressão Gênica , Helicobacter pylori/fisiologia , Concentração de Íons de Hidrogênio , Elementos de Resposta , Transativadores/metabolismo , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Humanos , Mutação , Proteoma , Proteômica/métodos , Transcrição Gênica
3.
J Biol Chem ; 291(11): 5971-5985, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26755728

RESUMO

The γ-secretase protease and associated regulated intramembrane proteolysis play an important role in controlling receptor-mediated intracellular signaling events, which have a central role in Alzheimer disease, cancer progression, and immune surveillance. An increasing number of γ-secretase substrates have a role in cytokine signaling, including the IL-6 receptor, IL-1 receptor type I, and IL-1 receptor type II. In this study, we show that following TNF-converting enzyme-mediated ectodomain shedding of TNF type I receptor (TNFR1), the membrane-bound TNFR1 C-terminal fragment is subsequently cleaved by γ-secretase to generate a cytosolic TNFR1 intracellular domain. We also show that clathrin-mediated internalization of TNFR1 C-terminal fragment is a prerequisite for efficient γ-secretase cleavage of TNFR1. Furthermore, using in vitro and in vivo model systems, we show that in the absence of presenilin expression and γ-secretase activity, TNF-mediated JNK activation was prevented, assembly of the TNFR1 pro-apoptotic complex II was reduced, and TNF-induced apoptosis was inhibited. These observations demonstrate that TNFR1 is a γ-secretase substrate and suggest that γ-secretase cleavage of TNFR1 represents a new layer of regulation that links the presenilins and the γ-secretase protease to pro-inflammatory cytokine signaling.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Apoptose , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Linhagem Celular , Quimiocina CXCL1/metabolismo , Ativação Enzimática , Deleção de Genes , Humanos , MAP Quinase Quinase 4/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Presenilinas/genética , Presenilinas/metabolismo , Proteólise , Transdução de Sinais
4.
Stem Cells ; 34(5): 1354-68, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26840832

RESUMO

Disorders affecting smooth muscle structure/function may require technologies that can generate large scale, differentiated and contractile smooth muscle cells (SMC) suitable for cell therapy. To date no clonal precursor population that provides large numbers of differentiated SMC in culture has been identified in a rodent. Identification of such cells may also enhance insight into progenitor cell fate decisions and the relationship between smooth muscle precursors and disease states that implicate differentiated SMC. In this study, we used classic clonal expansion techniques to identify novel self-renewing Islet 1 (Isl-1) positive primitive progenitor cells (PPC) within rat bone marrow that exhibited canonical stem cell markers and preferential differentiation towards a smooth muscle-like fate. We subsequently used molecular tagging to select Isl-1 positive clonal populations from expanded and de novo marrow cell populations. We refer to these previously undescribed cells as the PPC given its stem cell marker profile, and robust self-renewal capacity. PPC could be directly converted into induced smooth muscle cells (iSMC) using single transcription factor (Kruppel-like factor 4) knockdown or transactivator (myocardin) overexpression in contrast to three control cells (HEK 293, endothelial cells and mesenchymal stem cells) where such induction was not possible. iSMC exhibited immuno- and cytoskeletal-phenotype, calcium signaling profile and contractile responses similar to bona fide SMC. Passaged iSMC could be expanded to a scale sufficient for large scale tissue replacement. PPC and reprogramed iSMC so derived may offer future opportunities to investigate molecular, structure/function and cell-based replacement therapy approaches to diverse cardiovascular, respiratory, gastrointestinal, and genitourinary diseases that have as their basis smooth muscle cell functional aberrancy or numerical loss. Stem Cells 2016;34:1354-1368.


Assuntos
Reprogramação Celular , Proteínas com Homeodomínio LIM/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Miócitos de Músculo Liso/citologia , Fatores de Transcrição/metabolismo , Animais , Células da Medula Óssea/citologia , Diferenciação Celular , Proliferação de Células , Autorrenovação Celular , Separação Celular , Células Cultivadas , Células Clonais , Inativação Gênica , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Nucleares/metabolismo , Fenótipo , Ratos Endogâmicos F344 , Telomerase/metabolismo , Transativadores/metabolismo
5.
Appl Microbiol Biotechnol ; 101(4): 1465-1476, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27766358

RESUMO

Paenibacillus sp. JDR-2 (Pjdr2) has been studied as a model for development of bacterial biocatalysts for efficient processing of xylans, methylglucuronoxylan, and methylglucuronoarabinoxylan, the predominant hemicellulosic polysaccharides found in dicots and monocots, respectively. Pjdr2 produces a cell-associated GH10 endoxylanase (Xyn10A1) that catalyzes depolymerization of xylans to xylobiose, xylotriose, and methylglucuronoxylotriose with methylglucuronate-linked α-1,2 to the nonreducing terminal xylose. A GH10/GH67 xylan utilization regulon includes genes encoding an extracellular cell-associated Xyn10A1 endoxylanase and an intracellular GH67 α-glucuronidase active on methylglucuronoxylotriose generated by Xyn10A1 but without activity on methylglucuronoxylotetraose generated by a GH11 endoxylanase. The sequenced genome of Pjdr2 contains three paralogous genes potentially encoding GH115 α-glucuronidases found in certain bacteria and fungi. One of these, Pjdr2_5977, shows enhanced expression during growth on xylans along with Pjdr2_4664 encoding a GH11 endoxylanase. Here, we show that Pjdr2_5977 encodes a GH115 α-glucuronidase, Agu115A, with maximal activity on the aldouronate methylglucuronoxylotetraose selectively generated by a GH11 endoxylanase Xyn11 encoded by Pjdr2_4664. Growth of Pjdr2 on this methylglucuronoxylotetraose supports a process for Xyn11-mediated extracellular depolymerization of methylglucuronoxylan and Agu115A-mediated intracellular deglycosylation as an alternative to the GH10/GH67 system previously defined in this bacterium. A recombinantly expressed enzyme encoded by the Pjdr2 agu115A gene catalyzes removal of 4-O-methylglucuronate residues α-1,2 linked to internal xylose residues in oligoxylosides generated by GH11 and GH30 xylanases and releases methylglucuronate from polymeric methylglucuronoxylan. The GH115 α-glucuronidase from Pjdr2 extends the discovery of this activity to members of the phylum Firmicutes and contributes to a novel system for bioprocessing hemicelluloses.


Assuntos
Endo-1,4-beta-Xilanases/metabolismo , Glicosídeo Hidrolases/metabolismo , Paenibacillus/enzimologia , Paenibacillus/metabolismo , Xilanos/metabolismo
6.
BMC Genomics ; 17: 131, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26912334

RESUMO

BACKGROUND: Polysaccharides comprising plant biomass are potential resources for conversion to fuels and chemicals. These polysaccharides include xylans derived from the hemicellulose of hardwoods and grasses, soluble ß-glucans from cereals and starch as the primary form of energy storage in plants. Paenibacillus sp. JDR-2 (Pjdr2) has evolved a system for bioprocessing xylans. The central component of this xylan utilization system is a multimodular glycoside hydrolase family 10 (GH10) endoxylanase with carbohydrate binding modules (CBM) for binding xylans and surface layer homology (SLH) domains for cell surface anchoring. These attributes allow efficient utilization of xylans by generating oligosaccharides proximal to the cell surface for rapid assimilation. Coordinate expression of genes in response to growth on xylans has identified regulons contributing to depolymerization, importation of oligosaccharides and intracellular processing to generate xylose as well as arabinose and methylglucuronate. The genome of Pjdr2 encodes several other putative surface anchored multimodular enzymes including those for utilization of ß-1,3/1,4 mixed linkage soluble glucan and starch. RESULTS: To further define polysaccharide utilization systems in Pjdr2, its transcriptome has been determined by RNA sequencing following growth on barley-derived soluble ß-glucan, starch, cellobiose, maltose, glucose, xylose and arabinose. The putative function of genes encoding transcriptional regulators, ABC transporters, and glycoside hydrolases belonging to the corresponding substrate responsive regulon were deduced by their coordinate expression and locations in the genome. These results are compared to observations from the previously defined xylan utilization systems in Pjdr2. The findings from this study show that Pjdr2 efficiently utilizes these glucans in a manner similar to xylans. From transcriptomic and genomic analyses we infer a common strategy evolved by Pjdr2 for efficient bioprocessing of polysaccharides. CONCLUSIONS: The barley ß-glucan and starch utilization systems in Pjdr2 include extracellular glycoside hydrolases bearing CBM and SLH domains for depolymerization of these polysaccharides. Overlapping regulation observed during growth on these polysaccharides suggests they are preferentially utilized in the order of starch before xylan before barley ß-glucan. These systems defined in Pjdr2 may serve as a paradigm for developing biocatalysts for efficient bioprocessing of plant biomass to targeted biofuels and chemicals.


Assuntos
Metabolismo dos Carboidratos , Glicosídeo Hidrolases/genética , Paenibacillus/genética , Xilanos/metabolismo , Celobiose/metabolismo , Endo-1,4-beta-Xilanases/genética , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Hordeum/química , Maltose/metabolismo , Paenibacillus/metabolismo , RNA Bacteriano/genética , Análise de Sequência de RNA , Amido/metabolismo , Transcriptoma , beta-Glucanas/metabolismo
7.
Appl Environ Microbiol ; 82(6): 1789-1798, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26746717

RESUMO

Paenibacillus sp. strain JDR-2 (Paenibacillus JDR-2) secretes a multimodular cell-associated glycoside hydrolase family 10 (GH10) endoxylanase (XynA10A1) that catalyzes the depolymerization of methylglucuronoxylan (MeGXn) and rapidly assimilates the products of depolymerization. Efficient utilization of MeGXn has been postulated to result from the coupling of the processes of exocellular depolymerization and assimilation of oligosaccharide products, followed by intracellular metabolism. Growth and substrate utilization patterns with barley glucan and laminarin similar to those observed with MeGXn as a substrate suggest similar processes for 1,3-1,4-ß-glucan and 1,3-ß-glucan depolymerization and product assimilation. The Paenibacillus JDR-2 genome includes a cluster of genes encoding a secreted multimodular GH16 ß-glucanase (Bgl16A1) containing surface layer homology (SLH) domains, a secreted GH16 ß-glucanase with only a catalytic domain (Bgl16A2), transporter proteins, and transcriptional regulators. Recombinant Bgl16A1 and Bgl16A2 catalyze the formation of trisaccharides, tetrasaccharides, and larger oligosaccharides from barley glucan and of mono-, di-, tri-, and tetrasaccharides and larger oligosaccharides from laminarin. The lack of accumulation of depolymerization products during growth and a marked preference for polymeric glucan over depolymerization products support a process coupling extracellular depolymerization, assimilation, and intracellular metabolism for ß-glucans similar to that ascribed to the GH10/GH67 xylan utilization system in Paenibacillus JDR-2. Coordinate expression of genes encoding GH16 ß-glucanases, transporters, and transcriptional regulators supports their role as a regulon for the utilization of soluble ß-glucans. As in the case of the xylan utilization regulons, this soluble ß-glucan regulon provides advantages in the growth rate and yields on polymeric substrates and may be exploited for the efficient conversion of plant-derived polysaccharides to targeted products.


Assuntos
Paenibacillus/genética , Paenibacillus/metabolismo , Regulon , beta-Glucanas/metabolismo , Proteínas de Bactérias/genética , Genoma Bacteriano , Redes e Vias Metabólicas , Família Multigênica
8.
Appl Microbiol Biotechnol ; 100(3): 1501-1510, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26559526

RESUMO

Methylglucuronoxylans (MeGXn) and methylglucuronoarabinoxylans (MeGAXn) respectively comprise most of the hemicellulose fractions in dicots and monocots and, next to cellulose, are the major resources for the production of fuels and chemicals from lignocellulosics. With either MeGXn or MeGAXn as a substrate, Bacillus subtilis 168 accumulates acidic methylglucuronoxylotriose as a limit product following the uptake and metabolism of neutral xylooligosaccharides. Secreted GH11 endoxylanase (Xyn11A), GH30 endoxylanase (Xyn30C), and GH43 arabinoxylan arabinofuranohydrolase (Axh43) respectively encoded by the xynA, xynC, and xynD genes collectively contribute to the depolymerization of MeGAXn. Studies here demonstrate the complementary roles of these enzymes in the digestion of MeGAXn. Coordinate expression of the xynD and xynC genes defines an operon accounting for the Axh43-catalyzed release of arabinose followed by Xyn30C and Xyn11A-catalyzed depolymerization of MeGAXn. Both sources generate acetate and lactate as the principal fermentation products, with yields of 26 % acetate and 32 % lactate from MeGXn compared to 22 % acetate and 21 % lactate from MeGAXn. These studies of the GH43/GH30/GH11 system in B. subtilis 168 provide a basis for the further development of B. subtilis and related species as biocatalysts for direct conversion of hemicellulose derived from energy crops as well as agricultural and forest residues to chemical feedstocks.


Assuntos
Bacillus subtilis/metabolismo , Xilanos/metabolismo , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Biotransformação , Endo-1,4-beta-Xilanases/metabolismo , Fermentação , Xilanos/química
9.
Appl Environ Microbiol ; 81(4): 1490-501, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25527555

RESUMO

Xylans, including methylglucuronoxylans (MeGX(n)) and methylglucuronoarabinoxylans (MeGAXn), are the predominant polysaccharidesin hemicellulose fractions of dicots and monocots available for conversion to biofuels and chemicals. Paenibacillus sp. strain JDR-2 (Pjdr2) efficiently depolymerizes MeGX(n) and MeGAX(n) and assimilates the generated oligosaccharides, resulting in efficient saccharification and subsequent metabolism of these polysaccharides. A xylan utilization regulon encoding a cellassociated GH10 (glycoside hydrolase family 10) endoxylanase, transcriptional regulators, ABC (ATP binding cassette) transporters, an intracellular GH67 -glucuronidase, and other glycoside hydrolases contributes to complete metabolism. This GH10/GH67 system has been proposed to account for preferential utilization of xylans compared to free oligo- and monosaccharides. To identify additional genes contributing to MeGX(n) and MeGAXn utilization, the transcriptome of Pjdr2 has been sequenced following growth on each of these substrates as well as xylose and arabinose. Increased expression of genes with different substrates identified pathways common or unique to the utilization of MeGX(n) or MeGAX(n). Coordinate upregulation of genes comprising the GH10/GH67 xylan utilization regulon is accompanied with upregulation of genes encoding a GH11 endoxylanase and a GH115 -glucuronidase, providing evidence for a novel complementary pathway for processing xylans. Elevated expression of genes encoding a GH43 arabinoxylan arabinofuranohydrolase and an arabinose ABC transporter on MeGAX(n) but not on MeGX(n) supports a process in which arabinose may be removed extracellularly followed by its rapid assimilation.Further development of Pjdr2 for direct conversion of xylans to targeted products or introduction of these systems into fermentative strains of related bacteria may lead to biocatalysts for consolidated bioprocessing of hemicelluloses released from lignocellulose.


Assuntos
Proteínas de Bactérias/genética , Paenibacillus/genética , Transcriptoma , Xilanos/metabolismo , Proteínas de Bactérias/metabolismo , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Regulação Bacteriana da Expressão Gênica , Glucuronidase/genética , Glucuronidase/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Paenibacillus/enzimologia , Paenibacillus/metabolismo
10.
Appl Environ Microbiol ; 80(19): 6114-25, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25063665

RESUMO

Methylglucuronoarabinoxylan (MeGAXn) from agricultural residues and energy crops is a significant yet underutilized biomass resource for production of biofuels and chemicals. Mild thermochemical pretreatment of bagasse yields MeGAXn requiring saccharifying enzymes for conversion to fermentable sugars. A xylanolytic bacterium, Paenibacillus sp. strain JDR-2, produces an extracellular cell-associated GH10 endoxylanse (XynA1) which efficiently depolymerizes methylglucuronoxylan (MeGXn) from hardwoods coupled with assimilation of oligosaccharides for further processing by intracellular GH67 α-glucuronidase, GH10 endoxylanase, and GH43 ß-xylosidase. This process has been ascribed to genes that comprise a xylan utilization regulon that encodes XynA1 and includes a gene cluster encoding transcriptional regulators, ABC transporters, and intracellular enzymes that convert assimilated oligosaccharides to fermentable sugars. Here we show that Paenibacillus sp. JDR-2 utilized MeGAXn without accumulation of oligosaccharides in the medium. The Paenibacillus sp. JDR-2 growth rate on MeGAXn was 3.1-fold greater than that on oligosaccharides generated from MeGAXn by XynA1. Candidate genes encoding GH51 arabinofuranosidases with potential roles were identified. Following growth on MeGAXn, quantitative reverse transcription-PCR identified a cluster of genes encoding a GH51 arabinofuranosidase (AbfB) and transcriptional regulators which were coordinately expressed along with the genes comprising the xylan utilization regulon. The action of XynA1 on MeGAXn generated arabinoxylobiose, arabinoxylotriose, xylobiose, xylotriose, and methylglucuronoxylotriose. Recombinant AbfB processed arabinoxylooligosaccharides to xylooligosaccharides and arabinose. MeGAXn processing by Paenibacillus sp. JDR-2 may be achieved by extracellular depolymerization by XynA1 coupled to assimilation of oligosaccharides and further processing by intracellular enzymes, including AbfB. Paenibacillus sp. JDR-2 provides a GH10/GH67 system complemented with genes encoding intracellular GH51 arabinofuranosidases for efficient utilization of MeGAXn.


Assuntos
Glicosídeo Hidrolases/metabolismo , Modelos Moleculares , Paenibacillus/enzimologia , Xilanos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Glicosídeo Hidrolases/genética , Modelos Estruturais , Família Multigênica , Paenibacillus/genética , Proteínas Recombinantes , Especificidade por Substrato
11.
Appl Environ Microbiol ; 80(3): 917-27, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24271172

RESUMO

Xylans are the predominant polysaccharides in hemicelluloses and an important potential source of biofuels and chemicals. The ability of Bacillus subtilis subsp. subtilis strain 168 to utilize xylans has been ascribed to secreted glycoside hydrolase family 11 (GH11) and GH30 endoxylanases, encoded by the xynA and xynC genes, respectively. Both of these enzymes have been defined with respect to structure and function. In this study, the effects of deletion of the xynA and xynC genes, individually and in combination, were evaluated for xylan utilization and formation of acidic xylooligosaccharides. Parent strain 168 depolymerizes methylglucuronoxylans (MeGXn), releasing the xylobiose and xylotriose utilized for growth and accumulating the aldouronate methylglucuronoxylotriose (MeGX3) with some methylglucuronoxylotetraose (MeGX4). The combined GH11 and GH30 activities process the products generated by their respective actions on MeGXn to release a maximal amount of neutral xylooligosaccharides for assimilation and growth, at the same time forming MeGX3 in which the internal xylose is substituted with methylglucuronate (MeG). Deletion of xynA results in the accumulation of ß-1,4-xylooligosaccharides with degrees of polymerization ranging from 4 to 18 and an average degree of substitution of 1 in 7.2, each with a single MeG linked α-1,2 to the xylose penultimate to the xylose at the reducing terminus. Deletion of the xynC gene results in the accumulation of aldouronates comprised of 4 or more xylose residues in which the MeG may be linked α-1,2 to the xylose penultimate to the nonreducing xylose. These B. subtilis lines may be used for the production of acidic xylooligosaccharides with applications in human and veterinary medicine.


Assuntos
Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , Glucuronatos/metabolismo , Glicosídeo Hidrolases/metabolismo , Oligossacarídeos/metabolismo , Xilanos/metabolismo , Xilosidases/metabolismo , Bacillus subtilis/genética , Deleção de Genes , Glicosídeo Hidrolases/genética , Xilosidases/genética
12.
Elife ; 92020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32876048

RESUMO

The pathogenesis of Helicobacter pylori-associated gastric cancer is dependent on delivery of CagA into host cells through a type IV secretion system (T4SS). The H. pylori Cag T4SS includes a large membrane-spanning core complex containing five proteins, organized into an outer membrane cap (OMC), a periplasmic ring (PR) and a stalk. Here, we report cryo-EM reconstructions of a core complex lacking Cag3 and an improved map of the wild-type complex. We define the structures of two unique species-specific components (Cag3 and CagM) and show that Cag3 is structurally similar to CagT. Unexpectedly, components of the OMC are organized in a 1:1:2:2:5 molar ratio (CagY:CagX:CagT:CagM:Cag3). CagX and CagY are components of both the OMC and the PR and bridge the symmetry mismatch between these regions. These results reveal that assembly of the H. pylori T4SS core complex is dependent on incorporation of interwoven species-specific components.


Assuntos
Proteínas de Bactérias/ultraestrutura , Helicobacter pylori/química , Sistemas de Secreção Tipo IV/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Microscopia Crioeletrônica , Modelos Moleculares , Conformação Proteica , Especificidade da Espécie , Sistemas de Secreção Tipo IV/química , Sistemas de Secreção Tipo IV/classificação
13.
mBio ; 11(3)2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32605987

RESUMO

The Helicobacter pylori Cag type IV secretion system (T4SS) translocates the effector protein CagA and nonprotein bacterial constituents into host cells. In this study, we infected Mongolian gerbils with an H. pylori strain in which expression of the cagUT operon (required for Cag T4SS activity) is controlled by a TetR/tetO system. Transcript levels of cagU were significantly higher in gastric tissue from H. pylori-infected animals receiving doxycycline-containing chow (to derepress Cag T4SS activity) than in tissue from infected control animals receiving drug-free chow. At 3 months postinfection, infected animals receiving doxycycline had significantly increased gastric inflammation compared to infected control animals. Dysplasia (a premalignant histologic lesion) and/or invasive gastric adenocarcinoma were detected only in infected gerbils receiving doxycycline, not in infected control animals. We then conducted experiments in which Cag T4SS activity was derepressed during defined stages of infection. Continuous Cag T4SS activity throughout a 3-month time period resulted in higher rates of dysplasia and/or gastric cancer than observed when Cag T4SS activity was limited to early or late stages of infection. Cag T4SS activity for the initial 6 weeks of infection was sufficient for the development of gastric inflammation at the 3-month time point, with gastric cancer detected in a small proportion of animals. These experimental results, together with previous studies of cag mutant strains, provide strong evidence that Cag T4SS activity contributes to gastric carcinogenesis and help to define the stages of H. pylori infection during which Cag T4SS activity causes gastric alterations relevant for cancer pathogenesis.IMPORTANCE The "hit-and-run model" of carcinogenesis proposes that an infectious agent triggers carcinogenesis during initial stages of infection and that the ongoing presence of the infectious agent is not required for development of cancer. H. pylori infection and actions of CagA (an effector protein designated a bacterial oncoprotein, secreted by the Cag T4SS) are proposed to constitute a paradigm for hit-and-run carcinogenesis. In this study, we report the development of methods for controlling H. pylori Cag T4SS activity in vivo and demonstrate that Cag T4SS activity contributes to gastric carcinogenesis. We also show that Cag T4SS activity during an early stage of infection is sufficient to initiate a cascade of cellular alterations leading to gastric inflammation and gastric cancer at later time points.


Assuntos
Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Carcinogênese , Helicobacter pylori/efeitos dos fármacos , Neoplasias Gástricas/microbiologia , Sistemas de Secreção Tipo IV/genética , Animais , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Modelos Animais de Doenças , Doxiciclina/uso terapêutico , Gerbillinae/microbiologia , Infecções por Helicobacter/tratamento farmacológico , Helicobacter pylori/patogenicidade , Masculino , Óperon/genética , Sistemas de Secreção Tipo IV/antagonistas & inibidores
14.
Elife ; 82019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31210639

RESUMO

Bacterial type IV secretion systems (T4SSs) are molecular machines that can mediate interbacterial DNA transfer through conjugation and delivery of effector molecules into host cells. The Helicobacter pylori Cag T4SS translocates CagA, a bacterial oncoprotein, into gastric cells, contributing to gastric cancer pathogenesis. We report the structure of a membrane-spanning Cag T4SS assembly, which we describe as three sub-assemblies: a 14-fold symmetric outer membrane core complex (OMCC), 17-fold symmetric periplasmic ring complex (PRC), and central stalk. Features that differ markedly from those of prototypical T4SSs include an expanded OMCC and unexpected symmetry mismatch between the OMCC and PRC. This structure is one of the largest bacterial secretion system assemblies ever reported and illustrates the remarkable structural diversity that exists among bacterial T4SSs.


Assuntos
Helicobacter pylori/metabolismo , Sistemas de Secreção Tipo IV/química , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/ultraestrutura , Modelos Moleculares , Sistemas de Secreção Tipo IV/ultraestrutura
15.
Cell Chem Biol ; 26(5): 699-710.e6, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30880156

RESUMO

Our inability to effectively "drug" targets such as MYC for therapeutic purposes requires the development of new approaches. We report on the implementation of a phenotype-based assay for monitoring MYC expression in multiple myeloma cells. The open reading frame (ORF) encoding an unstable variant of GFP was engineered immediately downstream of the MYC ORF using CRISPR/Cas9, resulting in co-expression of both proteins from the endogenous MYC locus. Using fluorescence readout as a surrogate for MYC expression, we implemented a pilot screen in which ∼10,000 compounds were prosecuted. Among known MYC expression inhibitors, we identified cardiac glycosides and cytoskeletal disruptors to be quite potent. We demonstrate the power of CRISPR/Cas9 engineering in establishing phenotype-based assays to identify gene expression modulators.


Assuntos
Proteínas Proto-Oncogênicas c-myc/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Transcrição Gênica/efeitos dos fármacos , Bufanolídeos/farmacologia , Sistemas CRISPR-Cas/genética , Glicosídeos Cardíacos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo
16.
Mol Neurobiol ; 53(5): 3428-3438, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26081153

RESUMO

The importance of presenilin-dependent γ-secretase protease activities in the development, neurogenesis, and immune system is highlighted by the diversity of its substrates and characterization of Psen1- and Psen2-deficient transgenic animals. Functional differences between presenilin 1 (PS1) and presenilin 2 (PS2) are incompletely understood. In this study, we have identified a Psen2-specific function, not shared by Psen1 in Toll-like receptor signaling. We show that immortalized fibroblasts and bone marrow-derived macrophages from Psen2- but not Psen1-deficient mice display reduced responsiveness to lipopolysaccharide (LPS) with decreased nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) activity and diminished pro-inflammatory cytokine production. In whole animal in vivo responses, Psen2-deficient animals have abnormal systemic production of LPS-stimulated pro-inflammatory cytokines. Mechanistically, we demonstrate that Psen2 deficiency is paralleled by reduced transcription of tlr4 mRNA and loss of LPS-induced tlr4 mRNA transcription regulation. These observations illustrate a novel PS2-dependent means of modulating LPS-mediated immune responses and identify a functional distinction between PS1 and PS2 in innate immunity.


Assuntos
Imunidade Inata/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Presenilina-2/deficiência , Animais , Citocinas/metabolismo , Embrião de Mamíferos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Presenilina-2/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Transcrição Gênica/efeitos dos fármacos
17.
Atherosclerosis ; 216(1): 74-82, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21333993

RESUMO

OBJECTIVES: We examined the role of C-fms+ cells in response to vascular injury with a focus on the temporal and spatial platelet interactions, monocyte survival and proliferation within the evolving neointimal lesion and monocyte proliferation within the circulation and specified monocyte reservoir sites. Finally, we investigated the therapeutic effect of C-fms kinase inhibition (CFKI) on neointimal hyperplasia post vessel injury. METHODS AND RESULTS: We utilized murine carotid-wire injury, a transgenic C-fms reporting mouse model, confocal microscopy, shear-flow studies, specific C-fms signalling inhibition to determine the activation, mobilization and recruitment of C-fms+ monocytes in the context of early and late vessel remodelling. C-fms+ cells were recruited as early as 4h and accumulated over time in the neointima following injury. Monocyte interaction with platelet thrombus under flow and in vivo, in addition to monocyte mobilisation into the circulation post-injury was impaired by CFKI administration. Sustained inhibition of C-fms over 1-2 weeks abrogated the neointimal response but preserved re-endothelialisation post-injury. CONCLUSION: These data establish C-fms as a key regulator of the vascular response to injury and a potentially attractive therapeutic target in disease states where neointimal hyperplasia, monocyte activation and pathologic remodelling are prominent and endothelial homeostasis is desirable.


Assuntos
Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/metabolismo , Monócitos/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Túnica Íntima/metabolismo , Lesões do Sistema Vascular/metabolismo , Animais , Plaquetas/metabolismo , Antígeno CD11b/metabolismo , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/patologia , Lesões das Artérias Carótidas/tratamento farmacológico , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Hemorreologia , Hiperplasia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Monócitos/efeitos dos fármacos , Monócitos/patologia , Adesividade Plaquetária , Inibidores de Proteínas Quinases/farmacologia , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Fatores de Tempo , Túnica Íntima/efeitos dos fármacos , Túnica Íntima/lesões , Túnica Íntima/patologia , Lesões do Sistema Vascular/tratamento farmacológico , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA