Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Exp Bot ; 74(1): 40-71, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334052

RESUMO

Identifying traits for improving sink strength is a bottleneck to increasing wheat yield. The interacting processes determining sink strength and yield potential are reviewed and visualized in a set of 'wiring diagrams', covering critical phases of development (and summarizing known underlying genetics). Using this framework, we reviewed and assembled the main traits determining sink strength and identified research gaps and potential hypotheses to be tested for achieving gains in sink strength. In pre-anthesis, grain number could be increased through: (i) enhanced spike growth associated with optimized floret development and/or a reduction in specific stem-internode lengths and (ii) improved fruiting efficiency through an accelerated rate of floret development, improved partitioning between spikes, or optimized spike cytokinin levels. In post-anthesis, grain, sink strength could be augmented through manipulation of grain size potential via ovary size and/or endosperm cell division and expansion. Prospects for improving spike vascular architecture to support all rapidly growing florets, enabling the improved flow of assimilate, are also discussed. Finally, we considered the prospects for enhancing grain weight realization in relation to genetic variation in stay-green traits as well as stem carbohydrate remobilization. The wiring diagrams provide a potential workspace for breeders and crop scientists to achieve yield gains in wheat and other field crops.


Assuntos
Grão Comestível , Triticum , Triticum/genética , Fenótipo , Endosperma
2.
J Exp Bot ; 74(1): 72-90, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36264277

RESUMO

Source traits are currently of great interest for the enhancement of yield potential; for example, much effort is being expended to find ways of modifying photosynthesis. However, photosynthesis is but one component of crop regulation, so sink activities and the coordination of diverse processes throughout the crop must be considered in an integrated, systems approach. A set of 'wiring diagrams' has been devised as a visual tool to integrate the interactions of component processes at different stages of wheat development. They enable the roles of chloroplast, leaf, and whole-canopy processes to be seen in the context of sink development and crop growth as a whole. In this review, we dissect source traits both anatomically (foliar and non-foliar) and temporally (pre- and post-anthesis), and consider the evidence for their regulation at local and whole-plant/crop levels. We consider how the formation of a canopy creates challenges (self-occlusion) and opportunities (dynamic photosynthesis) for components of photosynthesis. Lastly, we discuss the regulation of source activity by feedback regulation. The review is written in the framework of the wiring diagrams which, as integrated descriptors of traits underpinning grain yield, are designed to provide a potential workspace for breeders and other crop scientists that, along with high-throughput and precision phenotyping data, genetics, and bioinformatics, will help build future dynamic models of trait and gene interactions to achieve yield gains in wheat and other field crops.


Assuntos
Grão Comestível , Triticum , Triticum/fisiologia , Fenótipo , Grão Comestível/fisiologia , Fotossíntese/fisiologia , Folhas de Planta
3.
Theor Appl Genet ; 126(10): 2587-96, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23884600

RESUMO

Drought can cause severe reduction in maize production, and strongly threatens crop yields. To dissect this complex trait and identify superior alleles, 350 tropical and subtropical maize inbred lines were genotyped using a 1536-SNP array developed from drought-related genes and an array of 56,110 random SNPs. The inbred lines were crossed with a common tester, CML312, and the testcrosses were phenotyped for nine traits under well-watered and water-stressed conditions in seven environments. Using genome-wide association mapping with correction for population structure, 42 associated SNPs (P ≤ 2.25 × 10(-6) 0.1/N) were identified, located in 33 genes for 126 trait × environment × treatment combinations. Of these genes, three were co-localized to drought-related QTL regions. Gene GRMZM2G125777 was strongly associated with ear relative position, hundred kernel weight and timing of male and female flowering, and encodes NAC domain-containing protein 2, a transcription factor expressed in different tissues. These results provide some good information for understanding the genetic basis for drought tolerance and further studies on identified candidate genes should illuminate mechanisms of drought tolerance and provide tools for designing drought-tolerant maize cultivars tailored to different environmental scenarios.


Assuntos
Agricultura , Estudo de Associação Genômica Ampla , Característica Quantitativa Herdável , Estresse Fisiológico , Água , Zea mays/genética , Zea mays/fisiologia , Desidratação , Desequilíbrio de Ligação/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Tailândia , Zea mays/anatomia & histologia
4.
Nat Food ; 3(5): 318-324, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-37117579

RESUMO

As crop yields are pushed closer to biophysical limits, achieving yield gains becomes increasingly challenging and will require more insight into deterministic pathways to yields. Here, we propose a wiring diagram as a platform to illustrate the interrelationships of the physiological traits that impact wheat yield potential and to serve as a decision support tool for crop scientists. The wiring diagram is based on the premise that crop yield is a function of photosynthesis (source), the investment of assimilates into reproductive organs (sinks) and the underlying processes that enable expression of both. By illustrating these linkages as coded wires, the wiring diagram can show connections among traits that may not have been apparent, and can inform new research hypotheses and guide crosses designed to accumulate beneficial traits and alleles in breeding. The wiring diagram can also serve to create an ever-richer common point of reference for refining crop models in the future.

5.
J Exp Bot ; 62(2): 701-16, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21084430

RESUMO

In maize, water stress at flowering causes loss of kernel set and productivity. While changes in the levels of sugars and abscisic acid (ABA) are thought to play a role in this stress response, the mechanistic basis and genes involved are not known. A candidate gene approach was used with association mapping to identify loci involved in accumulation of carbohydrates and ABA metabolites during stress. A panel of single nucleotide polymorphisms (SNPs) in genes from these metabolic pathways and in genes for reproductive development and stress response was used to genotype 350 tropical and subtropical maize inbred lines that were well watered or water stressed at flowering. Pre-pollination ears, silks, and leaves were analysed for sugars, starch, proline, ABA, ABA-glucose ester, and phaseic acid. ABA and sugar levels in silks and ears were negatively correlated with their growth. Association mapping with 1229 SNPs in 540 candidate genes identified an SNP in the maize homologue of the Arabidopsis MADS-box gene, PISTILLATA, which was significantly associated with phaseic acid in ears of well-watered plants, and an SNP in pyruvate dehydrogenase kinase, a key regulator of carbon flux into respiration, that was associated with silk sugar concentration. An SNP in an aldehyde oxidase gene was significantly associated with ABA levels in silks of water-stressed plants. Given the short range over which decay of linkage disequilibrium occurs in maize, the results indicate that allelic variation in these genes affects ABA and carbohydrate metabolism in floral tissues during drought.


Assuntos
Ácido Abscísico/metabolismo , Flores/metabolismo , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Água/metabolismo , Zea mays/genética , Mapeamento Cromossômico , Secas , Flores/genética , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/metabolismo , Zea mays/classificação , Zea mays/metabolismo
7.
Genetics ; 162(3): 1401-13, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12454083

RESUMO

We investigate the interplay between genetic diversity and recombination in maize (Zea mays ssp. mays). Genetic diversity was measured in three types of markers: single-nucleotide polymorphisms, indels, and microsatellites. All three were examined in a sample of previously published DNA sequences from 21 loci on maize chromosome 1. Small indels (1-5 bp) were numerous and far more common than large indels. Furthermore, large indels (>100 bp) were infrequent in the population sample, suggesting they are slightly deleterious. The 21 loci also contained 47 microsatellites, of which 33 were polymorphic. Diversity in SNPs, indels, and microsatellites was compared to two measures of recombination: C (=4Nc) estimated from DNA sequence data and R based on a quantitative recombination nodule map of maize synaptonemal complex 1. SNP diversity was correlated with C (r = 0.65; P = 0.007) but not with R (r = -0.10; P = 0.69). Given the lack of correlation between R and SNP diversity, the correlation between SNP diversity and C may be driven by demography. In contrast to SNP diversity, microsatellite diversity was correlated with R (r = 0.45; P = 0.004) but not C (r = -0.025; P = 0.55). The correlation could arise if recombination is mutagenic for microsatellites, or it may be consistent with background selection that is apparent only in this class of rapidly evolving markers.


Assuntos
Variação Genética , Recombinação Genética , Zea mays/genética , Mapeamento Cromossômico , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Seleção Genética , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA