RESUMO
The two-dimensional kagome lattice is an experimental playground for novel physical phenomena, from frustrated magnetism and topological matter to chiral charge order and unconventional superconductivity. A newly identified kagome superconductor, Ta2V3.1Si0.9 has recently gained attention for possessing a record high critical temperature, T C = 7.5 K for kagome metals at ambient pressure. In this study we conducted a series of muon spin rotation measurements to delve deeper into understanding the superconducting and normal state properties of Ta2V3.1Si0.9. We demonstrate that Ta2V3.1Si0.9 is a bulk superconductor with either a s+s-wave or anisotropic s-wave gap symmetry, and has an unusual paramagnetic shift in response to external magnetic fields in the superconducting state. Additionally, we observe an exceptionally low superfluid density - a distinctive characteristic of unconventional superconductivity - which remarkably is comparable to the superfluid density found in hole-doped cuprates. In its normal state, Ta2V3.1Si0.9 exhibits a significant increase in the zero-field muon spin depolarisation rate, starting at approximately 150 K, which has been observed in other kagome-lattice superconductors, and therefore hints at possible hidden magnetism. These findings characterise Ta2V3.1Si0.9 as an unconventional superconductor and a noteworthy new member of the vanadium-based kagome material family.
RESUMO
The breaking of time-reversal symmetry (TRS) in the normal state of kagome superconductors AV3Sb5 stands out as a significant feature, but its tunability is unexplored. Using low-energy muon spin rotation and local field numerical analysis, we study TRS breaking as a function of depth in single crystals of RbV3Sb5 (with charge order) and Cs(V0.86Ta0.14)3Sb5 (without charge order). In the bulk of RbV3Sb5 (>33 nm from the surface), we observed an increase in the internal magnetic field width in the charge-ordered state. Near the surface (<33 nm), the muon spin relaxation rate is significantly enhanced and this effect commences at temperatures significantly higher than the onset of charge order. In contrast, no similar field width enhancement was detected in Cs(V0.86Ta0.14)3Sb5, either in the bulk or near the surface. These observations indicate a strong connection between charge order and TRS breaking and suggest that TRS breaking can occur prior to long-range charge order.
RESUMO
Charge ordered kagome lattices have been demonstrated to be intriguing platforms for studying the intertwining of topology, correlation, and magnetism. The recently discovered charge ordered kagome material ScV6Sn6 does not feature a magnetic groundstate or excitations, thus it is often regarded as a conventional paramagnet. Here, using advanced muon-spin rotation spectroscopy, we uncover an unexpected hidden magnetism of the charge order. We observe an enhancement of the internal field width sensed by the muon ensemble, which takes place within the charge ordered state. More importantly, the muon spin relaxation rate below the charge ordering temperature is substantially enhanced by applying an external magnetic field. Taken together with the hidden magnetism found in AV3Sb5 (A = K, Rb, Cs) and FeGe kagome systems, our results suggest ubiqitous time-reversal symmetry-breaking in charge ordered kagome lattices.