Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Circ Res ; 119(3): 470-80, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27296507

RESUMO

RATIONALE: Catheter-based renal denervation (RDN) is currently under development for the treatment of resistant hypertension and is thought to reduce blood pressure via interruption of sympathetic pathways that modulate cardiovascular function. The sympathetic nervous system also plays a critical role in the pathogenesis of acute myocardial infarction and heart failure. OBJECTIVE: We examined whether treatment with radiofrequency (RF)-RDN would protect the heart against subsequent myocardial ischemia/reperfusion injury via direct effects on the myocardium. METHODS AND RESULTS: Spontaneously hypertensive rats received either bilateral RF-RDN or sham-RDN. At 4 weeks after RF-RDN (n=14) or sham-RDN (n=14) treatment, spontaneously hypertensive rats were subjected to 30 minutes of transient coronary artery occlusion and 24 hours -7 days reperfusion. Four weeks after RF-RDN, myocardial oxidative stress was markedly attenuated, and transcription and translation of antioxidants, superoxide dismutase 1 and glutathione peroxidase-1, were significantly upregulated compared with sham-RDN spontaneously hypertensive rats. RF-RDN also inhibited myocardial G protein-coupled receptor kinase 2 pathological signaling and enhanced myocardial endothelial nitric oxide synthase function and nitric oxide signaling. RF-RDN therapy resulted in a significant reduction in myocardial infarct size per area at risk compared with sham-RDN (26.8 versus 43.9%; P<0.01) at 24 hours postreperfusion and significantly improved left ventricular function at 7 days after myocardial ischemia/reperfusion. CONCLUSIONS: RF-RDN reduced oxidative stress, inhibited G protein-coupled receptor kinase 2 signaling, increased nitric oxide bioavailability, and ameliorated myocardial reperfusion injury in the setting of severe hypertension. These findings provide new insights into the remote cardioprotective effects of RF-RDN acting directly on cardiac myocytes to attenuate cell death and protect against ischemic injury.


Assuntos
Ablação por Cateter/métodos , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Rim/metabolismo , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/prevenção & controle , Óxido Nítrico/biossíntese , Animais , Denervação/métodos , Quinase 2 de Receptor Acoplado a Proteína G/antagonistas & inibidores , Rim/inervação , Rim/cirurgia , Masculino , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Estresse Oxidativo/fisiologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Transdução de Sinais/fisiologia
2.
JACC Basic Transl Sci ; 6(2): 154-170, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33665515

RESUMO

A lack of preclinical large animal models of heart failure with preserved ejection fraction (HFpEF) that recapitulate this comorbid-laden syndrome has led to the inability to tease out mechanistic insights and to test novel therapeutic strategies. This study developed a large animal model that integrated multiple comorbid determinants of HFpEF in a miniswine breed that exhibited sensitivity to obesity, metabolic syndrome, and vascular disease with overt clinical signs of heart failure. The combination of a Western diet and 11-deoxycorticosterone acetate salt-induced hypertension in the Göttingen miniswine led to the development of a novel large animal model of HFpEF that exhibited multiorgan involvement and a full spectrum of comorbidities associated with human HFpEF.

3.
J Am Coll Cardiol ; 70(17): 2139-2153, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29050562

RESUMO

BACKGROUND: Sustained sympathetic activation contributes to the progression of myocardial cell injury, cardiac fibrosis, and left ventricular (LV) dysfunction in heart failure (HF). OBJECTIVES: This study investigated the effects of radiofrequency renal nerve denervation (RF-RDN) on the pathobiology of HF and the interaction between the renal sympathetic nerves and natriuretic peptide (NP) metabolism. METHODS: Spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY) were subjected to 45 min of coronary artery ligation and reperfusion for 12 weeks. At 4 weeks post-reperfusion, SHR and WKY underwent either bilateral RF-RDN or sham-RDN. RESULTS: Following RF-RDN in both strains, LV ejection fraction remained significantly above those levels in respective sham-RDN rats, and at the end of the 12-week study, rats in both strains had significantly reduced LV fibrosis and improved vascular function. RF-RDN therapy significantly improved vascular reactivity to endothelium-dependent and -independent vasodilators as well as vascular compliance in the setting of severe HF. Improvements in LV function were accompanied by significant elevations in circulating NP as compared to those associated with sham-RDN. Further investigation into the cause of increased circulating NP levels demonstrated that RF-RDN significantly inhibited renal neprilysin activity in SHR and WKY with HF. Likewise, chronic treatment with the beta1 antagonist bisoprolol inhibited renal neprilysin activity and increased circulation NP levels in WKY with HF. CONCLUSIONS: This study identifies a novel endogenous pathway by which the renal nerves participate in the degradation of cardioprotective NP. Furthermore, removal of the influence of the renal nerves on kidney function attenuates renal neprilysin activity, augments circulating NP levels, reduces myocardial fibrosis, and improves LV function in the setting of HF.


Assuntos
Insuficiência Cardíaca/terapia , Rim/inervação , Neprilisina/antagonistas & inibidores , Simpatectomia , Aminobutiratos/farmacologia , Angiotensina II/sangue , Animais , Compostos de Bifenilo , Bisoprolol/farmacologia , Pressão Sanguínea , Combinação de Medicamentos , Ecocardiografia , Miocárdio/química , Miocárdio/patologia , Neprilisina/fisiologia , Nitritos/análise , Norepinefrina/sangue , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Artéria Renal/inervação , Renina/sangue , Traumatismo por Reperfusão/fisiopatologia , Tetrazóis/farmacologia , Valsartana , Função Ventricular Esquerda/fisiologia
4.
J Am Heart Assoc ; 5(7)2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27381758

RESUMO

BACKGROUND: Zofenopril, a sulfhydrylated angiotensin-converting enzyme inhibitor (ACEI), reduces mortality and morbidity in infarcted patients to a greater extent than do other ACEIs. Zofenopril is a unique ACEI that has been shown to increase hydrogen sulfide (H2S) bioavailability and nitric oxide (NO) levels via bradykinin-dependent signaling. Both H2S and NO exert cytoprotective and antioxidant effects. We examined zofenopril effects on H2S and NO bioavailability and cardiac damage in murine and swine models of myocardial ischemia/reperfusion (I/R) injury. METHODS AND RESULTS: Zofenopril (10 mg/kg PO) was administered for 1, 8, and 24 hours to establish optimal dosing in mice. Myocardial and plasma H2S and NO levels were measured along with the levels of H2S and NO enzymes (cystathionine ß-synthase, cystathionine γ-lyase, 3-mercaptopyruvate sulfur transferase, and endothelial nitric oxide synthase). Mice received 8 hours of zofenopril or vehicle pretreatment followed by 45 minutes of ischemia and 24 hours of reperfusion. Pigs received placebo or zofenopril (30 mg/daily orally) 7 days before 75 minutes of ischemia and 48 hours of reperfusion. Zofenopril significantly augmented both plasma and myocardial H2S and NO levels in mice and plasma H2S (sulfane sulfur) in pigs. Cystathionine ß-synthase, cystathionine γ-lyase, 3-mercaptopyruvate sulfur transferase, and total endothelial nitric oxide synthase levels were unaltered, while phospho-endothelial nitric oxide synthase(1177) was significantly increased in mice. Pretreatment with zofenopril significantly reduced myocardial infarct size and cardiac troponin I levels after I/R injury in both mice and swine. Zofenopril also significantly preserved ischemic zone endocardial blood flow at reperfusion in pigs after I/R. CONCLUSIONS: Zofenopril-mediated cardioprotection during I/R is associated with an increase in H2S and NO signaling.


Assuntos
Anti-Hipertensivos/farmacologia , Captopril/análogos & derivados , Coração/efeitos dos fármacos , Sulfeto de Hidrogênio/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Óxido Nítrico/metabolismo , Animais , Disponibilidade Biológica , Western Blotting , Captopril/farmacologia , Cistationina beta-Sintase/efeitos dos fármacos , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/efeitos dos fármacos , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Camundongos , Infarto do Miocárdio/patologia , Miocárdio/patologia , Óxido Nítrico Sintase Tipo III/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Ramipril/farmacologia , Distribuição Aleatória , Fluxo Sanguíneo Regional , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sulfurtransferases/efeitos dos fármacos , Sulfurtransferases/genética , Sulfurtransferases/metabolismo , Suínos , Porco Miniatura , Troponina I/efeitos dos fármacos , Troponina I/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA