Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Appl Environ Microbiol ; 86(3)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31704684

RESUMO

Chain elongation is emerging as a bioprocess to produce valuable medium-chain fatty acids (MCFA; 6 to 8 carbons in length) from organic waste streams by harnessing the metabolism of anaerobic microbiomes. Although our understanding of chain elongation physiology is still evolving, the reverse ß-oxidation pathway has been identified as a key metabolic function to elongate the intermediate products of fermentation to MCFA. Here, we describe two uncultured chain-elongating microorganisms that were enriched in an anaerobic microbiome transforming the residues from a lignocellulosic biorefining process. Based on a multi-omic analysis, we describe "Candidatus Weimeria bifida" gen. nov., sp. nov., and "Candidatus Pseudoramibacter fermentans" sp. nov., both predicted to produce MCFA but using different substrates. The analysis of a time series metatranscriptomic data set suggests that "Ca Weimeria bifida" is an effective xylose utilizer since both the pentose phosphate pathway and the bifid shunt are active. Furthermore, the metatranscriptomic data suggest that energy conservation during MCFA production in this organism is essential and occurs via the creation of an ion motive force using both the RNF complex and an energy-conserving hydrogenase. For "Ca Pseudoramibacter fermentans," predicted to produce MCFA from lactate, the metatranscriptomic analysis reveals the activity of an electron-confurcating lactate dehydrogenase, energy conservation via the RNF complex, H2 production for redox balance, and glycerol utilization. A thermodynamic analysis also suggests the possibility of glycerol being a substrate for MCFA production by "Ca Pseudoramibacter fermentans." In total, this work reveals unknown characteristics of MCFA production in two novel organisms.IMPORTANCE Chain elongation by medium-chain fatty acid (MCFA)-producing microbiomes offers an opportunity to produce valuable chemicals from organic streams that would otherwise be considered waste. However, the physiology and energetics of chain elongation are only beginning to be studied, and many of these organisms remain uncultured. We analyzed MCFA production by two uncultured organisms that were identified as the main MCFA producers in a microbial community enriched from an anaerobic digester; this characterization, which is based on meta-multi-omic analysis, complements the knowledge that has been acquired from pure-culture studies. The analysis revealed previously unreported features of the metabolism of MCFA-producing organisms.


Assuntos
Clostridiales/metabolismo , Ácidos Graxos/biossíntese , Microbiota , Anaerobiose , Clostridiales/classificação , Ácidos Graxos/metabolismo , Filogenia
2.
Sci Total Environ ; 925: 171697, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38492594

RESUMO

Landfills are a major source of anthropogenic methane emissions and have been found to produce nitrous oxide, an even more potent greenhouse gas than methane. Intermediate cover soil (ICS) plays a key role in reducing methane emissions but may also result in nitrous oxide production. To assess the potential for microbial methane oxidation and nitrous oxide production, long sequencing reads were generated from ICS microbiome DNA and reads were functionally annotated for 24 samples across ICS at a large landfill in New York. Further, incubation experiments were performed to assess methane consumption and nitrous oxide production with varying amounts of ammonia supplemented. Methane was readily consumed by microbes in the composite ICS and all incubations with methane produced small amounts of nitrous oxide even when ammonia was not supplemented. Incubations without methane produced significantly less nitrous oxide than those incubated with methane. In incubations with methane added, the observed specific rate of methane consumption was 0.776 +/- 0.055 µg CH4 g dry weight (DW) soil-1 h-1 and the specific rate of nitrous oxide production was 3.64 × 10-5 +/- 1.30 × 10-5 µg N2O g DW soil-1 h-1. The methanotrophs Methylobacter and an unclassified genus within the family Methlyococcaceae were present in the original ICS samples and the incubation samples, and their abundance increased during incubations with methane. Genes encoding particulate methane monooxygenase/ ammonia monooxygenase (pMMO) were much more abundant than genes encoding soluble methane monooxygenase (sMMO) across the landfill ICS. Genes encoding proteins that convert hydroxylamine to nitrous oxide were not highly abundant in the ICS or incubation metagenomes. In total, these results suggest that although ammonia oxidation via methanotrophs may result in low levels of nitrous oxide production, ICS microbial communities have the potential to greatly reduce the overall global warming potential of landfill emissions.


Assuntos
Gases de Efeito Estufa , Microbiota , Óxido Nitroso/análise , Amônia , Solo , Instalações de Eliminação de Resíduos , Metano/análise , Microbiologia do Solo
3.
Bioresour Technol ; 394: 130247, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38158092

RESUMO

Carbon transformations during anaerobic digestion are mediated by complex microbiomes, but their assembly is poorly understood, especially in full-scale digesters. Gene-centric metagenomics combining functional and taxonomic classification was performed for an on-farm digester during start-up. Cow manure and organic waste pre-treated in a hydrolysis tank were fed to the methane-producing digester and the volatile solids loading rate was slowly increased from 0 to 3.5 kg volatile solids m-3 d-1 over one year. The microbial community in the anaerobic digester exhibited a high ratio of archaea, which were dominated by hydrogenotrophic methanogens. Bacteria in the anaerobic digester had a high abundance of genes for ferredoxin cycling, H2 generation, and more metabolically complex fermentations than in the hydrolysis tank. In total, the results show that a functionally stable microbiome was achieved quickly during start-up and that the microbiome created in the low-pH hydrolysis tank did not persist in the downstream anaerobic digester.


Assuntos
Esterco , Microbiota , Animais , Feminino , Bovinos , Esterco/microbiologia , Anaerobiose , Reatores Biológicos/microbiologia , Bactérias/genética , Microbiota/genética , Metano
4.
Front Bioeng Biotechnol ; 11: 1197175, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37260833

RESUMO

The liquid residue resulting from various agroindustrial processes is both rich in organic material and an attractive source to produce a variety of chemicals. Using microbial communities to produce chemicals from these liquid residues is an active area of research, but it is unclear how to deploy microbial communities to produce specific products from the different agroindustrial residues. To address this, we fed anaerobic bioreactors one of several agroindustrial residues (carbohydrate-rich lignocellulosic fermentation conversion residue, xylose, dairy manure hydrolysate, ultra-filtered milk permeate, and thin stillage from a starch bioethanol plant) and inoculated them with a microbial community from an acid-phase digester operated at the wastewater treatment plant in Madison, WI, United States. The bioreactors were monitored over a period of months and sampled to assess microbial community composition and extracellular fermentation products. We obtained metagenome assembled genomes (MAGs) from the microbial communities in each bioreactor and performed comparative genomic analyses to identify common microorganisms, as well as any community members that were unique to each reactor. Collectively, we obtained a dataset of 217 non-redundant MAGs from these bioreactors. This metagenome assembled genome dataset was used to evaluate whether a specific microbial ecology model in which medium chain fatty acids (MCFAs) are simultaneously produced from intermediate products (e.g., lactic acid) and carbohydrates could be applicable to all fermentation systems, regardless of the feedstock. MAGs were classified using a multiclass classification machine learning algorithm into three groups, organisms fermenting the carbohydrates to intermediate products, organisms utilizing the intermediate products to produce MCFAs, and organisms producing MCFAs directly from carbohydrates. This analysis revealed common biological functions among the microbial communities in different bioreactors, and although different microorganisms were enriched depending on the agroindustrial residue tested, the results supported the conclusion that the microbial ecology model tested was appropriate to explain the MCFA production potential from all agricultural residues.

5.
Microbiol Resour Announc ; 11(8): e0029022, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35862918

RESUMO

Here, we report the metagenomes from five anaerobic bioreactors, operated under different conditions, that were fed carbohydrate-rich thin stillage from a corn starch ethanol plant. The putative functions of the abundant taxa identified here will inform future studies of microbial communities involved in valorizing this and other low-value agroindustrial residues.

6.
Microbiol Resour Announc ; 11(7): e0029322, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35770995

RESUMO

Fermentative microbial communities can be utilized for the conversion of various agroindustrial residues into valuable chemicals. Here, we report 34 metagenomes from anaerobic bioreactors fed lactose-rich ultrafiltered milk permeate and 278 metagenome-assembled genomes (MAGs). These MAGs can inform future studies aimed at generating renewable chemicals from dairy and other agroindustrial residues.

7.
Microbiol Resour Announc ; 11(4): e0115121, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35343806

RESUMO

There is growing interest in producing beneficial products from wastes using microbiomes. We previously performed multiomic analyses of a bioreactor microbiome that converted carbohydrate-rich lignocellulosic residues to medium-chain carboxylic acids. Here, we present draft metagenome-assembled genomes from this microbiome, obtained from reactors in which xylose was the primary carbon source.

8.
Microbiol Resour Announc ; 11(8): e0029222, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35894622

RESUMO

Anaerobic microbiomes can be used to recover the chemical energy in agroindustrial and municipal wastes as useful products. Here, we report a total of 109 draft metagenome-assembled genomes from a bioreactor-fed carbohydrate-rich dairy manure hydrolysate. Studying these genomes will aid us in deciphering the metabolic networks in anaerobic microbiomes.

9.
mSystems ; 5(5)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994290

RESUMO

Multispecies microbial communities determine the fate of materials in the environment and can be harnessed to produce beneficial products from renewable resources. In a recent example, fermentations by microbial communities have produced medium-chain fatty acids (MCFAs). Tools to predict, assess, and improve the performance of these communities, however, are limited. To provide such tools, we constructed two metabolic models of MCFA-producing microbial communities based on available genomic, transcriptomic, and metabolomic data. The first model is a unicellular model (iFermCell215), while the second model (iFermGuilds789) separates fermentation activities into functional guilds. Ethanol and lactate are fermentation products known to serve as substrates for MCFA production, while acetate is another common cometabolite during MCFA production. Simulations with iFermCell215 predict that low molar ratios of acetate to ethanol favor MCFA production, whereas the products of lactate and acetate coutilization are less dependent on the acetate-to-lactate ratio. In simulations of an MCFA-producing community fed a complex organic mixture derived from lignocellulose, iFermGuilds789 predicted that lactate was an extracellular cometabolite that served as a substrate for butyrate (C4) production. Extracellular hexanoic (C6) and octanoic (C8) acids were predicted by iFermGuilds789 to be from community members that directly metabolize sugars. Modeling results provide several hypotheses that can improve our understanding of microbial roles in an MCFA-producing microbiome and inform strategies to increase MCFA production. Further, these models represent novel tools for exploring the role of mixed microbial communities in carbon recycling in the environment, as well as in beneficial reuse of organic residues.IMPORTANCE Microbiomes are vital to human health, agriculture, and protecting the environment. Predicting behavior of self-assembled or synthetic microbiomes, however, remains a challenge. In this work, we used unicellular and guild-based metabolic models to investigate production of medium-chain fatty acids by a mixed microbial community that is fed multiple organic substrates. Modeling results provided insights into metabolic pathways of three medium-chain fatty acid-producing guilds and identified potential strategies to increase production of medium-chain fatty acids. This work demonstrates the role of metabolic models in augmenting multi-omic studies to gain greater insights into microbiome behavior.

10.
mSystems ; 3(6)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30505946

RESUMO

Biomanufacturing from renewable feedstocks can offset fossil fuel-based chemical production. One potential biomanufacturing strategy is production of medium-chain fatty acids (MCFA) from organic feedstocks using either pure cultures or microbiomes. While the set of microbes in a microbiome can often metabolize organic materials of greater diversity than a single species can and while the role of specific species may be known, knowledge of the carbon and energy flow within and between organisms in MCFA-producing microbiomes is only now starting to emerge. Here, we integrated metagenomic, metatranscriptomic, and thermodynamic analyses to predict and characterize the metabolic network of an anaerobic microbiome producing MCFA from organic matter derived from lignocellulosic ethanol fermentation conversion residue. A total of 37 high-quality (>80% complete, <10% contamination) metagenome-assembled genomes (MAGs) were recovered from the microbiome, and metabolic reconstruction of the 10 most abundant MAGs was performed. Metabolic reconstruction combined with metatranscriptomic analysis predicted that organisms affiliated with Lactobacillus and Coriobacteriaceae would degrade carbohydrates and ferment sugars to lactate and acetate. Lachnospiraceae- and Eubacteriaceae-affiliated organisms were predicted to transform these fermentation products to MCFA. Thermodynamic analyses identified conditions under which H2 is expected to be either produced or consumed, suggesting a potential role of H2 partial pressure in MCFA production. From an integrated systems analysis perspective, we propose that MCFA production could be improved if microbiomes were engineered to use homofermentative instead of heterofermentative Lactobacillus and if MCFA-producing organisms were engineered to preferentially use a thioesterase instead of a coenzyme A (CoA) transferase as the terminal enzyme in reverse ß-oxidation. IMPORTANCE Mixed communities of microbes play important roles in health, the environment, agriculture, and biotechnology. While tapping the combined activities of organisms within microbiomes may allow the utilization of a wider range of substrates in preference to the use of pure cultures for biomanufacturing, harnessing the metabolism of these mixed cultures remains a major challenge. Here, we predicted metabolic functions of bacteria in a microbiome that produces medium-chain fatty acids from a renewable feedstock. Our findings lay the foundation for efforts to begin addressing how to engineer and control microbiomes for improved biomanufacturing, how to build synthetic mixtures of microbes that produce valuable chemicals from renewable resources, and how to better understand the microbial communities that contribute to health, agriculture, and the environment.

11.
Biotechnol Biofuels ; 11: 200, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30034526

RESUMO

BACKGROUND: Lignocellulosic biomass is seen as an abundant renewable source of liquid fuels and chemicals that are currently derived from petroleum. When lignocellulosic biomass is used for ethanol production, the resulting liquid residue (stillage) contains large amounts of organic material that could be further transformed into recoverable bioproducts, thus enhancing the economics of the biorefinery. RESULTS: Here we test the hypothesis that a bacterial community could transform the organics in stillage into valuable bioproducts. We demonstrate the ability of this microbiome to convert stillage organics into medium-chain fatty acids (MCFAs), identify the predominant community members, and perform a technoeconomic analysis of recovering MCFAs as co-products of ethanol production. Steady-state operation of a stillage-fed bioreactor showed that 18% of the organic matter in stillage was converted to MCFAs. Xylose and complex carbohydrates were the primary substrates transformed. During the MCFA production period, the five major genera represented more than 95% of the community, including Lactobacillus, Roseburia, Atopobium, Olsenella, and Pseudoramibacter. To assess the potential benefits of producing MCFAs from stillage, we modeled the economics of ethanol and MCFA co-production, at MCFA productivities observed during reactor operation. CONCLUSIONS: The analysis predicts that production of MCFAs, ethanol, and electricity could reduce the minimum ethanol selling price from $2.15 to $1.76 gal-1 ($2.68 gal-1 gasoline equivalents) when compared to a lignocellulosic biorefinery that produces only ethanol and electricity.

12.
mSystems ; 2(3)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28744485

RESUMO

Rhodobacter sphaeroides is one of the best-studied alphaproteobacteria from biochemical, genetic, and genomic perspectives. To gain a better systems-level understanding of this organism, we generated a large transposon mutant library and used transposon sequencing (Tn-seq) to identify genes that are essential under several growth conditions. Using newly developed Tn-seq analysis software (TSAS), we identified 493 genes as essential for aerobic growth on a rich medium. We then used the mutant library to identify conditionally essential genes under two laboratory growth conditions, identifying 85 additional genes required for aerobic growth in a minimal medium and 31 additional genes required for photosynthetic growth. In all instances, our analyses confirmed essentiality for many known genes and identified genes not previously considered to be essential. We used the resulting Tn-seq data to refine and improve a genome-scale metabolic network model (GEM) for R. sphaeroides. Together, we demonstrate how genetic, genomic, and computational approaches can be combined to obtain a systems-level understanding of the genetic framework underlying metabolic diversity in bacterial species. IMPORTANCE Knowledge about the role of genes under a particular growth condition is required for a holistic understanding of a bacterial cell and has implications for health, agriculture, and biotechnology. We developed the Tn-seq analysis software (TSAS) package to provide a flexible and statistically rigorous workflow for the high-throughput analysis of insertion mutant libraries, advanced the knowledge of gene essentiality in R. sphaeroides, and illustrated how Tn-seq data can be used to more accurately identify genes that play important roles in metabolism and other processes that are essential for cellular survival.

13.
Water Res ; 121: 72-85, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28521237

RESUMO

Aeration in biological nutrient removal (BNR) processes accounts for nearly half of the total electricity costs at many wastewater treatment plants. Even though conventional BNR processes are usually operated to have aerated zones with high dissolved oxygen (DO) concentrations, recent research has shown that nitrification can be maintained using very low-DO concentrations (e.g., below 0.2 mg O2/L), and therefore, it may be possible to reduce energy use and costs in BNR facilities by decreasing aeration. However, the effect of reduced aeration on enhanced biological phosphorus removal (EBPR) is not understood. In this study, we investigated, at the pilot-scale level, the effect of using minimal aeration on the performance of an EBPR process. Over a 16-month operational period, we performed stepwise decreases in aeration, reaching an average DO concentration of 0.33 mg O2/L with stable operation and nearly 90% phosphorus removal. Under these low-DO conditions, nitrification efficiency was maintained, and nearly 70% of the nitrogen was denitrified, without the need for internal recycling of high nitrate aeration basin effluent to the anoxic zone. At the lowest DO conditions used, we estimate a 25% reduction in energy use for aeration compared to conventional BNR operation. Our improved understanding of the efficiency of low-DO BNR contributes to the global goal of reducing energy consumption during wastewater treatment operations.


Assuntos
Oxigênio , Esgotos , Eliminação de Resíduos Líquidos , Reatores Biológicos , Nitrogênio , Fósforo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA