RESUMO
This study aimed to investigate the effects of a 4-week live high train low (LHTL; FiO2 ~ 13.5%), intervention, followed by a tapering phase, on muscle glycogen concentration. Fourteen physically active males (28 ± 6 years, 81.6 ± 15.4 kg, 179 ± 5.2 cm) were divided into a control group (CON; n = 5), and the group that performed the LHTL, which was exposed to hypoxia (LHTL; n = 9). The subjects trained using a one-legged knee extension exercise, which enabled four experimental conditions: leg training in hypoxia (TLHYP); leg control in hypoxia (CLHYP, n = 9); leg trained in normoxia (TLNOR, n = 5), and leg control in normoxia (CLNOR, n = 5). All participants performed 18 training sessions lasting between 20 and 45 min [80-200% of intensity corresponding to the time to exhaustion (TTE) reached in the graded exercise test]. Additionally, participants spent approximately 10 h day-1 in either a normobaric hypoxic environment (14.5% FiO2; ~ 3000 m) or a control condition (i.e., staying in similar tents on ~ 530 m). Thereafter, participants underwent a taper protocol consisting of six additional training sessions with a reduced training load. SpO2 was lower, and the hypoxic dose was higher in LHTL compared to CON (p < 0.001). After 4 weeks, glycogen had increased significantly only in the TLNOR and TLHYP groups and remained elevated after the taper (p < 0.016). Time to exhaustion in the LHTL increased after both the 4-week training period and the taper compared to the baseline (p < 0.001). Although the 4-week training promoted substantial increases in muscle glycogen content, TTE increased in LHTL condition.
Assuntos
Glicogênio , Músculo Esquelético , Humanos , Masculino , Glicogênio/metabolismo , Músculo Esquelético/fisiologia , Músculo Esquelético/metabolismo , Adulto , Hipóxia/metabolismo , Exercício Físico/fisiologia , Consumo de Oxigênio/fisiologia , Adulto JovemRESUMO
Although the critical velocity (CV) protocol has been used to determine the aerobic capacity in rodents, there is a lack of studies that compare CV with maximal lactate steady state intensity (iMLSS) in mice. As a consequence, their physiological and molecular responses after exercise until exhaustion at CV intensity remain unclear. Thus, we aimed to compare and correlate CV with iMLSS in running mice, following different mathematical models for CV estimation. We also evaluated their physiological responses and muscle MCT1 and MCT4 after running until exhaustion at CV. Thirty C57BL/6J mice were divided into two groups (exercised-E and control-C). Group E was submitted to a CV protocol (4 days), using linear (lin1 and lin2) and hyperbolic (hyp) mathematical models to determine the distance, velocity, and time to exhaustion (tlim) of each predictive CV trial, followed by an MLSS protocol. After a running effort until exhaustion at CV intensity, the mice were immediately euthanized, while group C was euthanized at rest. No differences were observed between iMLSS (21.1 ± 1.1 m.min-1) and CV estimated by lin1 (21.0 ± 0.9 m.min-1, p = 0.415), lin2 (21.3 ± 0.9 m.min-1, p = 0.209), and hyp (20.6 ± 0.9 m.min-1, p = 0.914). According to the results, CV was significantly correlated with iMLSS. After running until exhaustion at CV (tlim = 28.4 ± 8,29 min), group E showed lower concentrations of hepatic and gluteal glycogen than group C, but no difference in the content of MCT1 (p = 0.933) and MCT4 (p = 0.123) in soleus muscle. Significant correlations were not found between MCT1 and MCT4 and tlim at CV intensity. Our results reinforce that CV is a valid and non-invasive protocol to estimate the maximal aerobic capacity in mice and that the content of MCT1 and MCT4 was not decisive in determining the tlim at CV, at least when measured immediately after the running effort.
Assuntos
Ácido Láctico , Simportadores , Camundongos , Animais , Camundongos Endogâmicos C57BL , Músculo Esquelético/fisiologia , Fígado , Transportadores de Ácidos MonocarboxílicosRESUMO
Ultramarathon races are fairly demanding and impose substantial physiological stress on healthy athletes. These competitions may thus be considerably more challenging for individuals with diabetes. This case study aims to describe glycemic control, muscle damage, inflammation, and renal function in 3 athletes with type 1 diabetes during a successful performance in a relay ultramarathon. The team completed the race in 29 hours and 28 minutes, earning third place. The total distance covered by each athlete was 68.7, 84.5, and 65.1 km. Most blood glucose levels showed that athletes were in a zone where it was safe to exercise (90-250 mg/dL or 5.0-13.9 mmol/L). Creatine kinase, lactate dehydrogenase, and aspartate aminotransferase serum levels increased 1.2- to 50.7-fold prerace to postrace, and were higher than the reference ranges for all the athletes postrace. Blood leukocytes, neutrophils, and serum C-reactive protein (CRP) increased 1.6- to 52-fold prerace to postrace and were higher than the reference ranges for 2 athletes after the race. Serum creatinine increased 1.2-fold prerace to postrace for all the athletes but did not meet the risk criteria for acute kidney injury. In conclusion, our main findings show evidence of satisfactory glycemic control in athletes with type 1 diabetes during a relay ultramarathon. Moreover, elevation of muscle damage and inflammatory biomarkers occurred without affecting renal function and challenging the maintenance of blood glucose among athletes. These findings are novel and provide an initial understanding of the physiological responses in athletes with type 1 diabetes during ultramarathon races.
Assuntos
Glicemia/análise , Diabetes Mellitus Tipo 1/fisiopatologia , Inflamação/fisiopatologia , Rim/fisiologia , Músculo Esquelético/fisiopatologia , Resistência Física , Corrida , Adulto , Atletas , Diabetes Mellitus Tipo 1/complicações , Humanos , MasculinoRESUMO
The purpose of this study was to analyze if different combinations of trials as well as mathematical models can modify the aerobic and anaerobic estimates from critical velocity protocol applied in canoe slalom. Fourteen male elite slalom kayakers from Brazilian canoe slalom team (K1) were evaluated. Athletes were submitted to four predictive trials of 150, 300, 450 and 600 meters in a lake and the time to complete each trial was recorded. Critical velocity (CV-aerobic parameter) and anaerobic paddling capacity (APC-anaerobic parameter) were obtained by three mathematical models (Linear1=distance-time; Linear 2=velocity-1/time and Non-Linear = time-velocity). Linear 1 was chosen for comparison of predictive trials combinations. Standard combination (SC) was considered as the four trials (150, 300, 450 and 600 m). High fits of regression were obtained from all mathematical models (range - R² = 0.96-1.00). Repeated measures ANOVA pointed out differences of all mathematical models for CV (p = 0.006) and APC (p = 0.016) as well as R² (p = 0.033). Estimates obtained from the first (1) and the fourth (4) predictive trials (150 m = lowest; and 600 m = highest, respectively) were similar and highly correlated (r=0.98 for CV and r = 0.96 for APC) with the SC. In summary, methodological aspects must be considered in critical velocity application in canoe slalom, since different combinations of trials as well as mathematical models resulted in different aerobic and anaerobic estimates. Key pointsGreat attention must be given for methodological concerns regarding critical velocity protocol applied on canoe slalom, since different estimates were obtained depending on the mathematical model and the predictive trials used.Linear 1 showed the best fits of regression. Furthermore, to the best of our knowledge and considering practical applications, this model is the easiest one to calculate the estimates from critical velocity protocol. Considering this, the abyss between science and practice may be decreased. Coaches of canoe slalom may simply apply critical velocity protocol and calculate by themselves the aerobic and anaerobic estimates.Still considering practical application, the results of this study showed the possibility of calculating the critical velocity estimates by using just two trials. These results are extremely relevant regarding saving time and easy applicability of this protocol for canoe slalom.
RESUMO
High-intensity interval training (HIIT) is of scientific interest due its role in improving physical fitness, but the effects of HIIT on bone health need be carefully explored. Further, it is necessary to know whether HIIT effects on bone health are dependent on the physical activity levels. This may be experimentally tested since we have built a large cage (LC) that allows animals to move freely, promoting an increase of spontaneous physical activity (SPA) in comparison to a small cage (SC). Thus, we examined the effects of HIIT on biophysical, biomechanical and biochemical parameters of bone tissue of C57BL/6J mice living in cages of two different sizes: small (SC) or large (LC) cages with 1320 cm2 and 4800 cm2 floor space, respectively. Male mice were subdivided into two groups within each housing type: Control (C) and Trained (T). At the end of the interventions, all mice were euthanized to extract the femur bone for biophysical, biomechanical and biochemical analyses. Based a significant interaction from two-way ANOVA, trained mice kept in large cage (but not for trained mice housed in SC) exhibited a reduction of tenacity and displacement at failure in bone. This suggests that long-term HIIT program, in addition with a more active lifestyle correlates with exerts negative effects on the bone of healthy mice. A caution must also be raised about the excessive adoption of physical training, at least regarding bone tissue. On the other hand, increased calcium was found in femur of mice housed in LC. In line with this, LC-C mice were more active (i.e. SPA) than other groups. This implies that an active lifestyle without long-term high intensity physical training seems to play a role in promoting benefits to bone tissue. Our data provides new insights for treatment of osteo-health related disorders.
Assuntos
Fêmur/química , Fêmur/fisiologia , Treinamento Intervalado de Alta Intensidade/efeitos adversos , Condicionamento Físico Animal/fisiologia , Aptidão Física/fisiologia , Animais , Densidade Óssea/fisiologia , Cálcio/análise , Abrigo para Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fósforo/análise , Comportamento Sedentário , Suporte de Carga/fisiologiaRESUMO
BACKGROUND: Oxidation resistance protein 1 (OXR1) is of scientific interest due its role in protecting tissues against oxidative stress, DNA mutations and tumorigenesis, but little is known regarding strategies to increase OXR1 in different tissues. As an improved antioxidant defense may result from a high total amount of physical activity, the present study was designed to determine whether an active lifestyle including aerobic training exercise and spontaneous physical activity (SPA) can increase OXR1. We have built a large cage (LC) that allows animals to move freely, promoting an increase in SPA in comparison to a small cage (SC). METHODS: We examined the effects of aerobic training applied for 8 weeks on SPA and OXR1 of C57BL/6 J mice living in two types of housing (SC and LC). OXR1 protein was studied in hypothalamus, muscle and liver, which were chosen due to their important role in energy and metabolic homeostasis. RESULTS: LC-mice were more active than SC-mice as determined by SPA values. Despite both trained groups exhibiting similar gains in aerobic capacity, only trained mice kept in a large cage (but not for trained mice housed in SC) exhibited high OXR1 in the hypothalamus and liver. Trained mice housed in LC that exhibited an up-regulation of OXR1 also were those who exhibited an energy-expensive metabolism (based on metabolic parameters). CONCLUSIONS: These results suggest that aerobic training associated with a more active lifestyle exerts a protective effect against oxidative damage and may be induced by changes in energy metabolism.
Assuntos
Metabolismo Energético/fisiologia , Hipotálamo/metabolismo , Fígado/metabolismo , Proteínas Mitocondriais/genética , Estresse Oxidativo , Condicionamento Físico Animal/fisiologia , Limiar Anaeróbio , Animais , Antioxidantes/metabolismo , Abrigo para Animais , Hipotálamo/patologia , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/fisiologia , Músculo Esquelético/metabolismoRESUMO
Although aerobic training has been shown to affect the lactate transport of skeletal muscle, there is no information concerning the effect of continuous aerobic training on spontaneous physical activity (SPA). Because every movement in daily life (i.e., SPA) is generated by skeletal muscle, we think that it is possible that an improvement of SPA could affect the physiological properties of muscle with regard to lactate transport. The aim of this study was to evaluate the effect of 12 weeks of continuous aerobic training in individualized intensity on SPA of rats and their gene expressions of monocarboxylate transporters (MCT) 1 and 4 in soleus (oxidative) and white gastrocnemius (glycolytic) muscles. We also analyzed the effect of continuous aerobic training on aerobic and anaerobic parameters using the lactate minimum test (LMT). Sixty-day-old rats were randomly divided into three groups: a baseline group in which rats were evaluated prior to initiation of the study; a control group (Co) in which rats were kept without any treatment during 12 weeks; and a chronic exercise group (Tr) in which rats swam for 40 min/day, 5 days/week at 80% of anaerobic threshold during 12 weeks. After the experimental period, SPA of rats was measured using a gravimetric method. Rats had their expression of MCTs determined by RT-PCR analysis. In essence, aerobic training is effective in maintaining SPA, but did not prevent the decline of aerobic capacity and anaerobic performance, leading us to propose that the decline of SPA is not fully attributed to a deterioration of physical properties. Changes in SPA were concomitant with changes in MCT1 expression in the soleus muscle of trained rats, suggestive of an additional adaptive response toward increased lactate clearance. This result is in line with our observation showing a better equilibrium on lactate production-remotion during the continuous exercise (LMT). We propose an approach to combat the decline of SPA of rats in their home cages. This new finding is worth for scientists who work with animal models to study the protective effects of exercise.
RESUMO
The aim of this study was to compare the effects of aerobic, strength, and combined training on metabolic disorders induced by a fructose-rich diet. Wistar rats (120 days old) were randomized into five groups (n = 8-14): C (control diet and sedentary), F (fed the fructose-rich diet and sedentary), FA (fed the fructose-rich diet and subject to aerobic exercise), FS (fed the fructose-rich diet and subject to strength exercise), and FAS (fed the fructose-rich diet and subject to combined aerobic and strength exercises). After the 8-week experiment, glucose homeostasis, blood biochemistry, tissue triglycerides, and inflammation were evaluated and analyzed. The strength protocol exerted greater effects on glucose homeostasis, insulin sensitivity, and liver lipid contents than other protocols (all P < 0.05). All three exercise protocols induced a remarkable reduction in inflammation, tissue triglyceride content, and inflammatory pathways, which was achieved through c-Jun NH2-terminal kinase (JNK) phosphorylation and factor nuclear kappa B (NFkB) activation in both the liver and the muscle. Our data suggest that strength training reduced the severity of most of the metabolic disorders induced by a fructose-rich diet and could be the most effective strategy to prevent or treat fructose-induced metabolic diseases.