Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Br J Haematol ; 200(5): 573-578, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36413792

RESUMO

The survival of acute myeloid leukaemia (AML) patients aged over 60 has been suboptimal historically, whether they are treated using hypomethylating agents, low-dose cytarabine (LDAC) or venetoclax-based regimens. Progress is being made, however, for subgroups with favourable molecular or cytogenetic findings. Arginine metabolism plays a key role in AML pathophysiology. We report the only randomised study of LDAC with recombinant arginase BCT-100 versus LDAC alone in older AML patients unsuitable for intensive therapy. Eighty-three patients were randomised to the study. An overall response rate was seen in 19.5% (all complete remission [CR]) and 15% (7.5% each in CR and CR without evidence of adequate count recovery [CRi]) of patients in the LDAC+BCT-100 and LDAC arms respectively (odds ratio 0.73, confidence interval 0.23-2.33; p = 0.592). No significant difference in overall or median survival between treatment arms was seen. The addition of BCT-100 to LDAC was well tolerated.


Assuntos
Citarabina , Leucemia Mieloide Aguda , Humanos , Pessoa de Meia-Idade , Idoso , Arginase , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Polietilenoglicóis/uso terapêutico
2.
Cancer Immunol Immunother ; 72(3): 543-560, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35962843

RESUMO

Acute myeloid leukaemia (AML) creates an immunosuppressive environment to conventional T cells through Arginase 2 (ARG2)-induced arginine depletion. We identify that AML blasts release the acute phase protein serum amyloid A (SAA), which acts in an autocrine manner to upregulate ARG2 expression and activity, and promote AML blast viability. Following in vitro cross-talk invariant natural killer T (iNKT) cells become activated, upregulate mitochondrial capacity, and release IFN-γ. iNKT retain their ability to proliferate and be activated despite the low arginine AML environment, due to the upregulation of Large Neutral Amino Acid Transporter-1 (LAT-1) and Argininosuccinate Synthetase 1 (ASS)-dependent amino acid pathways, resulting in AML cell death. T cell proliferation is restored in vitro and in vivo. The capacity of iNKT cells to restore antigen-specific T cell immunity was similarly demonstrated against myeloid-derived suppressor cells (MDSCs) in wild-type and Jα18-/- syngeneic lymphoma-bearing models in vivo. Thus, stimulation of iNKT cell activity has the potential as an immunotherapy against AML or as an adjunct to boost antigen-specific T cell immunotherapies in haematological or solid cancers.


Assuntos
Leucemia Mieloide Aguda , Células Supressoras Mieloides , Células T Matadoras Naturais , Humanos , Proliferação de Células , Arginina
3.
Blood ; 136(10): 1155-1160, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32573723

RESUMO

Hematological and solid cancers catabolize the semiessential amino acid arginine to drive cell proliferation. However, the resulting low arginine microenvironment also impairs chimeric antigen receptor T cells (CAR-T) cell proliferation, limiting their efficacy in clinical trials against hematological and solid malignancies. T cells are susceptible to the low arginine microenvironment because of the low expression of the arginine resynthesis enzymes argininosuccinate synthase (ASS) and ornithine transcarbamylase (OTC). We demonstrate that T cells can be reengineered to express functional ASS or OTC enzymes, in concert with different chimeric antigen receptors. Enzyme modifications increase CAR-T cell proliferation, with no loss of CAR cytotoxicity or increased exhaustion. In vivo, enzyme-modified CAR-T cells lead to enhanced clearance of leukemia or solid tumor burden, providing the first metabolic modification to enhance CAR-T cell therapies.


Assuntos
Arginina/metabolismo , Argininossuccinato Sintase/metabolismo , Imunoterapia Adotiva/métodos , Leucemia Mieloide Aguda/terapia , Neuroblastoma/terapia , Ornitina Carbamoiltransferase/metabolismo , Linfócitos T/transplante , Animais , Apoptose , Argininossuccinato Sintase/genética , Proliferação de Células , Humanos , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Engenharia Metabólica/métodos , Camundongos , Camundongos Nus , Neuroblastoma/imunologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Ornitina Carbamoiltransferase/genética , Receptores de Antígenos Quiméricos/química , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Front Oncol ; 14: 1296576, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38357205

RESUMO

Background: The survival for many children with relapsed/refractory cancers remains poor despite advances in therapies. Arginine metabolism plays a key role in the pathophysiology of a number of pediatric cancers. We report the first in child study of a recombinant human arginase, BCT-100, in children with relapsed/refractory hematological, solid or CNS cancers. Procedure: PARC was a single arm, Phase I/II, international, open label study. BCT-100 was given intravenously over one hour at weekly intervals. The Phase I section utilized a modified 3 + 3 design where escalation/de-escalation was based on both the safety profile and the complete depletion of arginine (defined as adequate arginine depletion; AAD <8µM arginine in the blood after 4 doses of BCT-100). The Phase II section was designed to further evaluate the clinical activity of BCT-100 at the pediatric RP2D determined in the Phase I section, by recruitment of patients with pediatric cancers into 4 individual groups. A primary evaluation of response was conducted at eight weeks with patients continuing to receive treatment until disease progression or unacceptable toxicity. Results: 49 children were recruited globally. The Phase I cohort of the trial established the Recommended Phase II Dose of 1600U/kg iv weekly in children, matching that of adults. BCT-100 was very well tolerated. No responses defined as a CR, CRi or PR were seen in any cohort within the defined 8 week primary evaluation period. However a number of these relapsed/refractory patients experienced prolonged radiological SD. Conclusion: Arginine depletion is a clinically safe and achievable strategy in children with cancer. The RP2D of BCT-100 in children with relapsed/refractory cancers is established at 1600U/kg intravenously weekly and can lead to sustained disease stability in this hard to treat population. Clinical trial registration: EudraCT, 2017-002762-44; ISRCTN, 21727048; and ClinicalTrials.gov, NCT03455140.

5.
Blood Adv ; 7(9): 1754-1761, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36521029

RESUMO

Cancer cells take up amino acids from the extracellular space to drive cell proliferation and viability. Similar mechanisms are applied by immune cells, resulting in the competition between conventional T cells, or indeed chimeric antigen receptor (CAR) T cells and tumor cells, for the limited availability of amino acids within the environment. We demonstrate that T cells can be re-engineered to express SLC7A5 or SLC7A11 transmembrane amino acid transporters alongside CARs. Transporter modifications increase CAR T-cell proliferation under low tryptophan or cystine conditions with no loss of CAR cytotoxicity or increased exhaustion. Transcriptomic and phenotypic analysis reveals that downstream, SLC7A5/SLC7A11-modified CAR T cells upregulate intracellular arginase expression and activity. In turn, we engineer and phenotype a further generation of CAR T cells that express functional arginase 1/arginase 2 enzymes and have enhanced CAR T-cell proliferation and antitumor activity. Thus, CAR T cells can be adapted to the amino acid metabolic microenvironment of cancer, a hitherto recognized but unaddressed barrier for successful CAR T-cell therapy.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Linfócitos T , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Arginase/genética , Arginase/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Neoplasias/metabolismo , Aminoácidos/metabolismo , Microambiente Tumoral
6.
Front Neurol ; 9: 429, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29963002

RESUMO

Traumatic brain injury (TBI) is a serious problem that causes high morbidity and mortality around the world. Currently, no reliable biomarkers are used to assess the severity and predict the recovery. Many protein biomarkers were extensively studied for diagnosis and prognosis of different TBI severities such as S-100ß, glial fibrillary acidic protein (GFAP), neuron-specific enolase (NSE), neurofilament light chain (NFL), cleaved tau protein (C-tau), and ubiquitin C-terminal hydrolase-L1 (UCH-L1). However, none of these candidates is currently used in the clinical practice, due to relatively low sensitivity, for the diagnosis of mild TBI (mTBI) or mild to moderate TBI (MMTBI) patients who are clinically well and do not have a detectable intracranial pathology on the scans. MicroRNAs (miRNAs or miRs) are a class of small endogenous molecular regulators, which showed to be altered in different pathologies, including TBI and for this reason, their potential role in diagnosis, prognosis and therapeutic applications, is explored. Promising miRNAs such as miR-21, miR-16 or let-7i were identified as suitable candidate biomarkers for TBI and can differentiate mild from severe TBI. Also, they might represent new potential therapeutic targets. Identification of miRNA signature in tissue or biofluids, for several pathological conditions, is now possible thanks to the introduction of new high-throughput technologies such as microarray platform, Nanostring technologies or Next Generation Sequencing. This review has the aim to describe the role of microRNA in TBI and to explore the most commonly used techniques to identify microRNA profile. Understanding the strengths and limitations of the different methods can aid in the practical use of miRNA profiling for diverse clinical applications, including the development of a point-of-care device.

7.
BMJ Open ; 8(11): e024245, 2018 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-30478124

RESUMO

INTRODUCTION: The diagnosis of mild traumatic brain injury or sports-related concussion is a challenge for all clinicians, players, coaches and parents involved in contact sports. Currently, there is no validated objective biomarker available to assess the presence or severity of concussion in sport, and so it is necessary to rely on subjective measures like self-reporting of symptoms which depend on the cooperation of the athlete. There is a significant health risk associated with repetitive injury if the diagnosis is missed, and so there is great value in an objective biomarker to assist diagnostic and prognostic decisions. OBJECTIVE: To establish a panel of non-invasive MicroRNA biomarkers in urine and saliva for the rapid diagnosis of sports-related concussion and investigate the kinetics and clinical utility of these biomarkers in assisting diagnostic, prognostic and return-to-play decisions. METHODS AND ANALYSIS: Observational, prospective, multicentre cohort study recruiting between the 2017-2018 and 2018-2019 Rugby Union seasons. Professional rugby players in the two highest tiers of senior professional domestic rugby competition in England will be recruited prospectively to the study. During the season, three groups will be identified: athletes entering the World Rugby Head Injury Assessment (HIA) protocol, uninjured control athletes and control athletes with musculoskeletal injuries. Saliva and urine will be collected from these athletes at multiple timepoints, coinciding with key times in the HIA protocol and return-to-play process. ETHICS AND DISSEMINATION: Ethics approval has been obtained. The compiled and analysed results will be presented at national and international conferences concerning the care of patients with traumatic brain injury. Results will also be submitted for peer review and publication in the subject journals/literature.


Assuntos
Traumatismos em Atletas/diagnóstico , Concussão Encefálica/diagnóstico , Futebol Americano/lesões , MicroRNAs/análise , Adulto , Traumatismos em Atletas/urina , Biomarcadores/análise , Concussão Encefálica/urina , Humanos , Masculino , Estudos Prospectivos , Saliva/química , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA