Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Divers ; 27(3): 1285-1295, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35867289

RESUMO

Imidazolidine-2-thione substructure represents a pharmaceutically attractive scaffold, being included in different antimicrobial, anticancer and pesticide agents. To further evaluate the pharmaceutical potential of this chemical moiety, imidazolidine-2-thione was reacted with atypical Vilsmeier adducts, obtained by the condensation between dimethylacetamide and various acyl chlorides endowed with different electronic and steric properties. The formation of mono-acylated or di-acylated thiourea derivatives emerged to be affected by the nature of the considered acyl chloride reagent. Computational semi-empirical simulations were carried out to rationalize the relevant factor influencing the outcome of the reaction. As acylthioureas are pharmacologically relevant compounds, the chemical versatility of mono-acylated derivatives were evaluated by reacting benzoyl imidazolidin-2-thione with acyl chlorides. A small library of asymmetric di-acylthioureas was prepared and the obtained derivatives did not show any cytotoxicity on SKOV-3 and MCF-7 cancer cell lines. Additionally, in silico studies predicted good pharmacokinetics properties and promising drug-like characteristics for mono- and di-acylated thioureas. These considerations further support the value of the prepared compounds as interesting non-cytotoxic chemical scaffold useful in the medicinal chemistry field.


Assuntos
Etilenotioureia , Humanos , Cloretos , Tioureia/farmacologia , Células MCF-7
2.
Nanoscale Adv ; 5(2): 329-336, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36756275

RESUMO

Lifestyle-related disorders are a public health problem worldwide and their early diagnosis represents the key to successful therapies. In this framework, rapid point-of-care (POC) tests are one of the most promising diagnostic techniques. In particular, the use of saliva is raising increasing interest as a noninvasive biological fluid in POC systems, although the low concentration of salivary biomarkers typically requires strong advances to improve the device sensitivity. In this study, the plasmonic properties of two differently shaped gold nanoparticles (i.e., nanospheres and nanostars) were combined to develop an efficient paper-based immunosensor for the naked-eye evaluation of salivary cortisol, known as one of the main stress-related biomarkers. Notably, the dual-color system facilitated an immediate and easy evaluation of cortisol levels, based on a blue-to-pink color change of the detection zone. Furthermore, the implemented strategy showed potential applicability as a rapid and portable monitoring system, allowing discriminating different target concentrations.

3.
Nanoscale Adv ; 5(8): 2167-2174, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37056622

RESUMO

The evaluation of Total Antioxidant Capacity (TAC), namely the complete pattern of antioxidant species in a complex medium, is of major interest in many fields ranging from health monitoring to quality control in the food industry. In this framework, point-of-care (POC) testing technologies are a promising diagnostic solution for rapid on-site analyses, unlike laboratory based-assays, which are often limited by centralized analyses, time-consuming and costly procedures, and invasiveness in the case of health diagnostics. In this work, we developed a POC methodology that evaluates TAC in different matrices, exploiting the peroxidase-like properties of 5 nm platinum nanoparticles (PtNPs), combined with a colorimetric paper-based device. Notably, we designed and optimized a multi-line PtNPs-based Lateral Flow Assay (LFA), which relies on three sequential test lines with increasing concentrations of platinum nanozymes, to get a non-invasive, accurate, and fast (10 minutes) colorimetric evaluation of the body TAC in saliva samples. Furthermore, we employed the device as a prototype of a quality control tool in the food industry, for the determination of the TAC in fruit juices.

4.
Antioxidants (Basel) ; 12(5)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37237895

RESUMO

Platinum nanoparticles (PtNPs) are being intensively explored as efficient nanozymes due to their biocompatibility coupled with excellent catalytic activities, which make them potential candidates as antimicrobial agents. Their antibacterial efficacy and the precise mechanism of action are, however, still unclear. In this framework, we investigated the oxidative stress response of Salmonella enterica serovar Typhimurium cells when exposed to 5 nm citrate coated PtNPs. Notably, by performing a systematic investigation that combines the use of a knock-out mutant strain 12023 HpxF- with impaired response to ROS (ΔkatE ΔkatG ΔkatN ΔahpCF ΔtsaA) and its respective wild-type strain, growth experiments in both aerobic and anaerobic conditions, and untargeted metabolomic profiling, we were able to disclose the involved antibacterial mechanisms. Interestingly, PtNPs exerted their biocidal effect mainly through their oxidase-like properties, though with limited antibacterial activity on the wild-type strain at high particle concentrations and significantly stronger action on the mutant strain, especially in aerobic conditions. The untargeted metabolomic analyses of oxidative stress markers revealed that 12023 HpxF- was not able to cope with PtNPs-based oxidative stress as efficiently as the parental strain. The observed oxidase-induced effects comprise bacterial membrane damage as well as lipid, glutathione and DNA oxidation. On the other hand, in the presence of exogenous bactericidal agents such as hydrogen peroxide, PtNPs display a protective ROS scavenging action, due to their efficient peroxidase mimicking activity. This mechanistic study can contribute to clarifying the mechanisms of PtNPs and their potential applications as antimicrobial agents.

5.
ACS Appl Mater Interfaces ; 14(22): 25898-25906, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35612325

RESUMO

Counterfeiting is a worldwide issue affecting many industrial sectors, ranging from specialized technologies to retail market, such as fashion brands, pharmaceutical products, and consumer electronics. Counterfeiting is not only a huge economic burden (>$ 1 trillion losses/year), but it also represents a serious risk to human health, for example, due to the exponential increase of fake drugs and food products invading the market. Considering such a global problem, numerous anticounterfeit technologies have been recently proposed, mostly based on tags. The most advanced category, based on encryption and cryptography, is represented by physically unclonable functions (PUFs). A PUF tag is based on a unique physical object generated through chemical methods with virtually endless possible combinations, providing remarkable encoding capability. However, most methods adopted nowadays are based on expensive and complex technologies, relying on instrumental readouts, which make them not effective in real-world applications. To achieve a simple yet cryptography-based anticounterfeit method, herein we exploit a combination of nanotechnology, chemistry, and artificial intelligence (AI). Notably, we developed platinum nanocatalyst-enabled visual tags, exhibiting the properties of PUFs (encoding capability >10300) along with fast (1 min) ON/OFF readout and full reversibility, enabling multiple onsite authentication cycles. The development of an accurate AI-aided algorithm powers the system, allowing for smartphone-based PUF authentications.


Assuntos
Inteligência Artificial , Medicamentos Falsificados , Algoritmos , Humanos , Nanotecnologia , Smartphone
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA