Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Ann Surg ; 274(3): e282-e288, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31663974

RESUMO

OBJECTIVE: To understand and overcome the challenges associated with moving life-urgent payloads using unmanned aircraft. BACKGROUND DATA: Organ transportation has not been substantially innovated in the last 60 years. Unmanned aircraft systems (UAS; ie, drones) have the potential to reduce system inefficiencies and improve access to transplantation. We sought to determine if UASs could successfully be integrated into the current system of organ delivery. METHODS: A multi-disciplinary team was convened to design and build an unmanned aircraft to autonomously carry a human organ. A kidney transplant recipient was enrolled to receive a drone-shipped kidney. RESULTS: A uniquely designed organ drone was built. The aircraft was flown 44 times (total of 7.38 hours). Three experimental missions were then flown in Baltimore City over 2.8 miles. For mission #1, no payload was carried. In mission #2, a payload of ice, saline, and blood tubes (3.8 kg, 8.4 lbs) was flown. In mission #3, a human kidney for transplant (4.4 kg, 9.7 lbs) was successfully flown by a UAS. The organ was transplanted into a 44-year-old female with a history of hypertensive nephrosclerosis and anuria on dialysis for 8 years. Between postoperative days (POD) 1 and 4, urine increased from 1.0 L to 3.6 L. Creatinine decreased starting on POD 3, to an inpatient nadir of 6.9 mg/dL. The patient was discharged on POD 4. CONCLUSIONS: Here, we completed the first successful delivery of a human organ using unmanned aircraft. This study brought together multidisciplinary resources to develop, build, and test the first organ drone system, through which we performed the first transplant of a drone transported kidney. These innovations could inform not just transplantation, but other areas of medicine requiring life-saving payload delivery as well.


Assuntos
Aeronaves , Transplante de Rim , Adulto , Desenho de Equipamento , Feminino , Humanos , Fatores de Tempo
3.
IEEE J Transl Eng Health Med ; 6: 4000107, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30464862

RESUMO

Organ transportation has yet to be substantially innovated. If organs could be moved by drone, instead of ill-timed commercial aircraft or expensive charter flights, lifesaving organs could be transplanted more quickly. A modified, six-rotor UAS was used to model situations relevant to organ transportation. To monitor the organ, we developed novel technologies that provided the real-time organ status using a wireless biosensor combined with an organ global positioning system. Fourteen drone organ missions were performed. Temperatures remained stable and low (2.5 °C). Pressure changes (0.37-0.86 kPa) correlated with increased altitude. Drone travel was associated with less vibration (<0.5 G) than was observed with fixed-wing flight (>2.0 G). Peak velocity was 67.6 km/h (42 m/h). Biopsies of the kidney taken prior to and after organ shipment revealed no damage resulting from drone travel. The longest flight was 3.0 miles, modeling an organ flight between two inner city hospitals. Organ transportation may be an ideal use-case for drones. With the development of faster, larger drones, long-distance drone organ shipment may result in substantially reduced cold ischemia times, subsequently improved organ quality, and thousands of lives saved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA