Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Phys Chem Chem Phys ; 26(17): 12982-12992, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639064

RESUMO

In this work, the magnetic properties of tetrel clusters SnNTM, which are singly doped with transition metals (TM), are investigated. On the one hand, the number of tetrel atoms (N = 11, 12, 14 and 17 with TM = Mn) is varied; on the other hand, different transition metals (N = 14, TM = Cr, Mn, Fe) are studied. Magnetic deflection experiments under cryogenic conditions show that the variation of the number of tetrel atoms strongly changes the magnetic properties of the Mn-doped clusters. It is observed that Sn12Mn, Sn11Mn and Sn14Mn partially show super-atomic behaviour, while spin relaxation occurs in Sn17Mn. Magnetic deflection experiments at higher nozzle temperatures were carried out for the first time enhanced by a second parallel-aligned Stern-Gerlach magnet to achieve larger deflections. The resulting temperature-dependent one-sided deflections are quantitatively analysed using Curie's law and show that Sn17Mn possesses the highest magnetic moment of these clusters, followed by Sn12Mn and Sn11Mn. Sn14Mn shows the lowest magnetic moment. The replacement of Mn by Cr in Sn14Mn leads to a diamagnetic singlet, i.e., the magnetic moment of Cr in Sn14Cr is completely quenched. The replacement of Mn by Fe in turn leads to a paramagnetic species, whereby Sn14Fe is most likely present as a triplet. On this basis, the geometrical and electronic structures are analysed using quantum chemical calculations, indicating an arachno-type structure for Sn14Cr, Sn14Mn and Sn14Fe, which has already been predicted in the literature for Si14Cr. This is experimentally confirmed by deflection of molecular beams with an electric field under cryogenic conditions, suggesting that the arachno-type geometry is crucial for the overall stability of the transition-metal-doped tetrel clusters Sn14TM with TM = Cr, Mn, Fe.

2.
J Phys Chem A ; 128(10): 1853-1862, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38442276

RESUMO

We present a comprehensive investigation of the dielectric behavior and geometric structures of cold neutral SiN clusters of intermediate size with N = 12-30 atoms. For this, cryogenic electric beam deflection experiments were carried out for the first time for Si clusters at nozzle temperatures below 30 K. In combination with quantum chemical calculations based on density functional theory and classical trajectory simulations of the rotational dynamics in the electric field, the geometric structures of the clusters are discriminated. Clusters with N < 15 favor a single-capped square antiprism as a nucleus for cluster growth, forming compact geometries in the molecular beam. Starting with 15 atoms, a prolate-like growth is observed. The prolate structures are based on stable building blocks which reappear for numerous sizes throughout the cluster growth. Finally, the transition from prolate to quasi-spherical shapes is shown to take place around Si29/Si30 as predicted theoretically by the literature. The influence of the exchange-correlation functional on the predicted structure and dielectric properties is discussed in detail for some clusters. Relaxation of the electric-dipole moment and therefore quenching of the observed electric response due to vibrational excitation and collisions with the background gas are also considered, which explains deviations between experiment and theory.

3.
J Am Chem Soc ; 145(4): 2070-2074, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36656622

RESUMO

We report the observation of large electronic g-factors in magic number main group bimetallic nanoclusters by performing Stern-Gerlach deflection experiments at 10 K. The clusters AlPb12 and InPb12 exhibit values of g = 3.5-4.0, whereas GaPb12 clusters surprisingly reveal a value of g < 2.0. Multireference ab initio methods are applied to unmask the origin of the g-factors and to gain insight into the electronic structure. The interplay of the pyritohedral molecular symmetry, a particularly strong spin-orbit coupling involved in the ground state, and the presence of low-lying degenerate excited states causes large positive g-factors in AlPb12 and InPb12. Contrarily, the spin-orbit coupling in the GaPb12 ground state is completely quenched. This is due to the d-block contraction lowering the nonbonding Ga 5s orbital and consequently forming an icosahedral ground state. Thus, endohedral p-doped tetrel clusters, composed of purely main group elements, state a novel and unique class of magnetic compounds and their study contributes to a more profound understanding of the metal-metal interaction in polynuclear clusters as well as magnetism at the molecular level.

4.
Faraday Discuss ; 242(0): 231-251, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36260024

RESUMO

MSn12 clusters (M = Al, Ga, In) were studied in electric and magnetic beam deflection experiments at temperatures of 16 K and 30 K. For all three species, the results of the electric beam deflection experiments indicate the presence of two structural isomers of which one is considerably polar. The magnetic beam deflection experiments show atom-like beam splitting (superatomic behavior) with g-factors of 2.6-2.7 for a fraction of the clusters in the molecular beam, indicating significant spin-orbit coupling. On the one hand, we investigate by several experiments combining electric and magnetic deflectors how the superatomic and polar fractions are linked proving the correlation of the Stark and Zeeman effects. On the other hand, the magnetic deflection behavior is examined more thoroughly by performing quantum chemical calculations. By systematic distortion of an artificial icosahedral tin cage towards the global minimum structure, which has a pyritohedral geometry, the shifts in the magnitude of the g-factor are found to be mainly caused by a single dominant electronic excitation. This allows one to develop a semi-quantitative understanding of the magnetic behavior. On the basis of avoided crossings in the rotational Zeeman diagram, simulations of the magnetic beam deflection comprising computed rotational constants, vibrational modes, g-factors and spin-rotation coupling constants are performed which resemble our experimental findings in satisfactory agreement. With this, a better understanding of the magnetic properties of nanoalloy clusters can be achieved. However, the geometric structures of the polar isomers are still unknown.

5.
Phys Chem Chem Phys ; 25(19): 13376-13382, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37145168

RESUMO

In silicon clusters a structural transition from prolate to near-spherical structures takes place at a size of about 25-30 atoms. While some of the prolate clusters are very polar, there has been no experimental evidence of the presence of dipole moments in larger silicon clusters with near-spherical shape. By means of electric molecular beam deflection experiments at cryogenic temperatures, it was possible to prove for the first time that SiN clusters with more than N = 30 atoms are also polar. Interestingly, the dipole moment per atom for clusters in the range between 30 and 80 or 90 atoms is almost constant and amounts to 0.02 D. This unusual behaviour manifests in effective polarizabilities increasing linearly with cluster size. The dipolar contribution to the polarizability means that SiN clusters with N = 80 atoms can be polarized more than twice as well as a correspondingly small sphere with the dielectric properties of bulk α-Si. This finding is analysed with quantum chemical calculations concerning the geometric structure as well as the charge distribution and is related to the dielectric behaviour of polar semiconductor nanocrystals.

6.
Phys Chem Chem Phys ; 25(45): 31514-31518, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37943088

RESUMO

Correction for 'Optical absorption and shape transition in neutral SnN clusters with N ≤ 40: a photodissociation spectroscopy and electric beam deflection study' by Andreas Lehr et al., Phys. Chem. Chem. Phys., 2022, 24, 11616-11635, https://doi.org/10.1039/D2CP01171A.

7.
Phys Chem Chem Phys ; 24(19): 11616-11635, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35507965

RESUMO

Neutral SnN clusters with N = 6-20, 25, 30, 40 are investigated in a joint experimental and quantum chemical study with the aim to reveal their optical absorption in conjunction with their structural evolution. Electric beam deflection and photodissociation spectroscopy are applied as molecular beam techniques at nozzle temperatures of 16 K, 32 K and 300 K. The dielectric response is probed following the approach in S. Schäfer et al., J. Phys. Chem A, 2008, 112, 12312-12319. It is improved on those findings and the cluster size range is extended in order to cover the prolate growth regime. The impact of the electric dipole moment, rotational temperature and vibrational excitation on the deflection profiles is discussed thoroughly. Photodissociation spectra of tin clusters are recorded for the first time, show similarities to spectra of silicon clusters and are demonstrated to be significantly complicated by the presence of multiphoton absorption in the low-energy region and large excess energies upon dissociation which is modelled by the RRKM theory. In both experiments two isomers for the clusters with N = 8, 11, 12, 19 need to be considered to explain the experimental results. Triple-capped trigonal prisms and double-capped square antiprisms are confirmed to be the driving building units for almost the entire size range. Three dominating fragmentation channels are observed, i.e. the loss of a tin atom for N < 12, a Sn7 fragment for N < 19 and a Sn10 fragment for N ≥ 19 with Sn15 subunits constituting recurring geometric motifs for N > 20. The prolate-to-quasispherical structural transition is found to occur at 30 < N ≤ 40 and is analyzed with respect to the observed optical behavior taking quantum chemical calculations and the Mie-Gans theory into account. Limitations of the experimental approach to study the geometric and electronic structure of the clusters at elevated temperatures due to vibrational excitation is also thoroughly discussed.

8.
J Comput Chem ; 42(5): 303-309, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33300611

RESUMO

Global energy minimum structures and optoelectronic properties are presented for isolated Cdx Sey + clusters with x + y ≤ 26. The compositional- and size-dependent variation of optical, electronic and geometric properties is systematically studied within the framework of ground state and time-dependent density functional theory. The applied methods are justified by benchmarks with experimental data. It is shown that the optical gap can be tuned by more than 2 eV by only changing the composition for a fixed number of atoms. The stoichiometric species reveal an unexpected size-dependent behavior in comparison to larger colloidal CdSe quantum dots, that is, a redshift of the optical gap was observed with decreasing cluster size in contrast to predictions by quantum-size effects. This unexpected result is discussed in detail taking the positive charge of the clusters into account.

9.
Phys Chem Chem Phys ; 23(19): 11334-11344, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33959734

RESUMO

Magnetic double deflection experiments reveal that nuclear spins diminish electron spin coherence in isolated AlSn12 clusters. A temperature-dependent fraction of the endohedral cage clusters show superatomic response in Stern-Gerlach experiments which allows one to detect spin flips under controlled conditions in a double deflection arrangement. The concentration of nuclear spins in the tin cage is varied by using isotopically enriched tin samples. Hyperfine interaction, nuclear spin statistics and spin dynamics are discussed in detail. It is demonstrated that state-interference in the multistate Landau-Zener system AlSn12 explains why the spin decoherence is significantly increased when one or two nuclear spins are already present in the cluster, while the spin coherence no longer changes significantly with the addition of further nuclear spins.

10.
Phys Chem Chem Phys ; 23(16): 9971-9979, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33870392

RESUMO

AlSn12 clusters were studied in electric and magnetic beam deflection experiments at nozzle temperatures of Tnozzle = 16-100 K. For 16 K, spatial separation of two fractions of clusters in the molecular beam was achieved by deflection with both an electric and a magnetic field gradient. In the electric deflection experiment, about 76% of the clusters are identified as non-polar and the rest as highly-polar, while the magnetic deflection experiment demonstrates that 37% show an atom-like and 63% a Brillouin-like magnetic response. In order to probe the connection between these fractions in electric and magnetic beam deflection, a combination of these two experiments was performed. This clearly demonstrates that the highly-polar clusters show a Brillouin-like magnetic response and only the non-polar clusters can be deflected atom-like in a magnetic field. This observation suggests that two structural isomers are present in the molecular beam, one of which is highly-symmetric, and demonstrates that spatial isomer separation of metal clusters containing heavy elements is feasible. However, vibrational excitation must also be taken into account to explain the observed magnetic response. A stepwise increase of the cluster temperature shows that suppression of the superatomic response is more sensitive to vibrational excitation than the quenching of the permanent electric dipole moment.

11.
J Phys Chem A ; 124(1): 185-196, 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31880936

RESUMO

In the present work, the optical response of isolated (CdSe)n+ clusters with n = 3-6 is probed by measuring the photodissociation cross section in the photon energy range ℏω = 1.9-4.9 eV. In this joint experimental and theoretical study, the experimental observations are analyzed with time-dependent density functional theory and equation-of-motion coupled cluster theory. Structural candidates for the time-dependent excited-state calculations are obtained via global optimization by employing a genetic algorithm. The combined experimental and theoretical approach allows the discrimination of cluster geometries in the molecular beam experiments. From n ≥ 5, three-dimensional structures are found. Already for n = 6, light absorption in the red spectral range is observed. This observation is discussed with respect to the size dependence of the optical behavior of finite systems taking experimental and theoretical work on bare and ligated CdSe clusters and nanoparticles into account. Particularly, the influence of the net charge and ligands is considered. This allows a detailed discussion of the size-dependent evolution of the optical properties starting from molecular species over to nanoclusters and nanoparticles and finally to bulk CdSe.

12.
J Chem Phys ; 153(16): 164308, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33138399

RESUMO

A combined approach based on quantum-chemical calculations and molecular beam experiments demonstrates that in isolated nanoalloy clusters of type GdSnN, a total number of N = 19 tin atoms can be arranged around a central gadolinium atom. While the formation of the first coordination shell is incomplete for clusters with less than 15 tin atoms, the second coordination sphere starts to form for cluster sizes of more than 20 tin atoms. The magnetic properties of the clusters reveal that the tin atoms not only provide a hollow cage for Gd but also are chemically bound to the central atom. The calculated spin densities imply that an electron transfer from Gd to the tin cage takes place, which is similar to what is observed for endohedral metallofullerenes. However, the measured electric dipole moments indicate that in contrast to metallofullerenes, the Gd atom is located close to the center of the tin cage.

13.
Phys Chem Chem Phys ; 21(44): 24478-24488, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31686071

RESUMO

Molecular beam electric deflection experiments on neutral single copper-doped tin clusters are presented at different cryogenic nozzle temperatures. The experimental cluster beam profiles SnNCu (N = 9-16) are compared with classical rotational dynamic simulations of globally optimized structures obtained by a genetic algorithm based on density functional theory. The formation of endohedral complexes with comparable geometry to manganese- and gold-doped tin is confirmed. Theoretical methods predict ionic structures of the type Cuδ-@SnNδ+ with electron transfer from the tin cage to the central copper dopant. This behaviour is discussed based on a molecular orbital picture particularly with respect to other transition metal tetrel complexes.

14.
J Phys Chem A ; 123(7): 1434-1444, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30735044

RESUMO

Doped semiconductors play a prevalent role in all aspects of modern technology. Because of the trend for smaller and smaller devices, we have investigated N-doping at the sub-nanoscale. For that purpose, we present molecular beam electric and magnetic deflection experiments on Sn NP ( N = 6-12) and Sn NP2 ( N = 7-12) clusters combined with quantum chemical calculations and classical beam deflection simulations. The theoretically identified and experimentally confirmed global minima structures resemble the valence-isoelectronic pure tin anions/dianions very closely, while each phosphorus dopant occupies the site of a tin atom. In Stern-Gerlach experiments, the single-doped clusters show a partial atom-like deflection behavior with total electronic angular momentum J = 1/2 whereas the results for the double-doped species suggest singlet states. This is in full agreement with quantum chemical results. The effect of vibrational excitation on magnetic and electric deflection experiments is examined. Our results provide insight into how the electric, magnetic, and structure properties are affected by n-doping at the sub-nanoscale.

17.
J Chem Phys ; 149(24): 244308, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30599714

RESUMO

We present the first experimental optical absorption spectra of isolated CdSe 2 + and Cd2 Se 2 + species in the photon energy range ℏω = 1.9-4.9 eV. We probe the optical response by measuring photodissociation cross sections and combine our results with time-dependent density functional theory and equation-of-motion coupled cluster calculations. Structural candidates for the time-dependent excited state calculations are generated by a density functional theory based genetic algorithm as a global geometry optimization tool. This approach allows us to determine the cluster geometries present in our molecular beams by a comparison of experimental spectra with theoretical predictions for putative global minimum candidates. For CdSe 2 + , an excellent agreement between the global minimum and the experimental results is presented. We identify the global minimum geometry of Cd2 Se 2 + as a trapezium, which is built up of a neutral Se2 and a cationic Cd 2 + unit, in contrast to what was previously proposed. We find an excellent overall agreement between experimental spectra and excited state calculations. We further study the influence of total and partial charges on the optical and geometric properties of Cd2Se2 and compare our findings to CdSe quantum dots and to bulk CdSe.

18.
Phys Chem Chem Phys ; 18(16): 10751-7, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-26823011

RESUMO

To achieve an overall efficient solar water splitting device, not only the efficiencies of photo-converter and catalyst are decisive, but also their appropriate coupling must be considered. In this report we explore the origin of a voltage loss occurring at the interface between a thin film amorphous silicon tandem cell and the TiO2 corrosion protection layer by means of XPS. We find that the overall device can be disassembled into its primary constituents and that they can be analyzed separately, giving insight into the device structure as a whole. Thus, a series of model experiments were conducted, each representing a part of the complete device. We finally arrive at the conclusion, that the formation of a SiO2 interfacial layer between the TiO2 protection layer and the silicon cell gives rise to the voltage loss observed for the whole device.

19.
Angew Chem Int Ed Engl ; 54(36): 10675-80, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26206667

RESUMO

The controversial nature of chemical bonding between noble gases and noble metals is addressed. Experimental evidence of exceptionally strong Au-Ar bonds in Ar complexes of mixed Au-Ag trimers is presented. IR spectra reveal an enormous influence of the attached Ar atoms on vibrational modes, particularly in Au-rich trimers, where Ar atoms are heavily involved owing to a relativistically enhanced covalency. In Ag-rich trimers, vibrational transitions of the metal framework predominate, indicating a pure electrostatic character of the Ag-Ar bonds. The experimental findings are analyzed by means of DFT calculations, which show how the relativistic differences between Au and Ag are manifested in stronger Au-Ar binding energies. Because of the ability to vary composition and charge distribution, the trimers serve as ideal model systems to study the chemical nature of the bonding of noble gases to closed-shell systems containing gold.

20.
Phys Chem Chem Phys ; 16(43): 23952-66, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25283162

RESUMO

We present extensive temperature dependent (16-70 K) magnetic and electric molecular beam deflection measurements on neutral manganese doped tin clusters Mn/SnN (N = 9-18). Cluster geometries are identified by comparison of electric deflection profiles and quantum chemical data obtained from DFT calculations. Most clusters adopt endohedral cage structures and all clusters exhibit non-vanishing magnetic dipole moments. In the high temperature regime all species show exclusively high field seeking magnetic response and the magnetic dipole moments are extracted from the shift of the molecular beam. At low nozzle temperatures, some of the clusters show considerably broadened beam profiles due to non-uniform deflection in the magnetic field. The results reflect the influence of the chemical environment on the magnetic properties of the transition metal in atomic domain magnetic nanoalloys. Different ground state spin multiplicities and coupling of rotational and vibrational degrees of freedom with the spin angular momentum of isolated clusters of different size apparently cause these variations of spin orientation. This is discussed by taking electronic and molecular structure data into account.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA