Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Nano Lett ; 16(5): 3116-23, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27104768

RESUMO

One-dimensional ballistic transport is demonstrated for a high-mobility InAs nanowire device. Unlike conventional quantum point contacts (QPCs) created in a two-dimensional electron gas, the nanowire QPCs represent one-dimensional constrictions formed inside a quasi-one-dimensional conductor. For each QPC, the local subband occupation can be controlled individually between zero and up to six degenerate modes. At large out-of-plane magnetic fields Landau quantization and Zeeman splitting emerge and comprehensive voltage bias spectroscopy is performed. Confinement-induced quenching of the orbital motion gives rise to significantly modified subband-dependent Landé g factors. A pronounced g factor enhancement related to Coulomb exchange interaction is reported. Many-body effects of that kind also manifest in the observation of the 0.7·2e(2)/h conductance anomaly, commonly found in planar devices.

2.
Nano Lett ; 16(7): 4569-75, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27347816

RESUMO

We report on a prototype device geometry where a number of quantum point contacts are connected in series in a single quasi-ballistic InAs nanowire. At finite magnetic field the backscattering length is increased up to the micron-scale and the quantum point contacts are connected adiabatically. Hence, several input gates can control the outcome of a ballistic logic operation. The absence of backscattering is explained in terms of selective population of spatially separated edge channels. Evidence is provided by regular Aharonov-Bohm-type conductance oscillations in transverse magnetic fields, in agreement with magnetoconductance calculations. The observation of the Shubnikov-de Haas effect at large magnetic fields corroborates the existence of spatially separated edge channels and provides a new means for nanowire characterization.

3.
Nano Lett ; 14(9): 4977-81, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25118624

RESUMO

We report on the fabrication and characterization of symmetric nanowire-based Josephson junctions, that is, Al- and Nb-based junctions, and asymmetric junctions employing superconducting Al and Nb. In the symmetric junctions, a clear and pronounced Josephson supercurrent is observed. These samples also show clear signatures of subharmonic gap structures. At zero magnetic field, a Josephson coupling is found for the asymmetric Al/InAs-nanowire/Nb junctions as well. By applying a magnetic field above the critical field of Al or by raising the temperature above the critical temperature of Al the junction can be switched to an effective single-interface superconductor/nanowire structure. In this regime, a pronounced zero-bias conductance peak due to reflectionless tunneling has been observed.

4.
Nano Lett ; 14(11): 6269-74, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25300066

RESUMO

The magnetotransport of GaAs/InAs core/shell nanowires contacted by two superconducting Nb electrodes is investigated, where the InAs shell forms a tube-like conductive channel around the highly resistive GaAs core. By applying a magnetic field along the nanowire axis, regular magnetoconductance oscillations with an amplitude in the order of e(2)/h are observed. The oscillation amplitude is found to be larger by 2 orders of magnitude compared to the measurements of a reference sample with normal metal contacts. For the Nb-contacted core/shell nanowire the oscillation period corresponds to half a flux quantum Φ0/2 = h/2e in contrast to the period of Φ0 of the reference sample. The strongly enhanced magnetoconductance oscillations are explained by phase-coherent resonant Andreev reflections at the Nb-core/shell nanowire interface.

5.
Nanotechnology ; 24(33): 335601, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23881182

RESUMO

We report on the self-catalyzed growth of InAs nanowires by molecular beam epitaxy on GaAs substrates covered by a thin silicon oxide layer. Clear evidence is presented to demonstrate that, under our experimental conditions, the growth takes place by the vapor-liquid-solid (VLS) mechanism via an In droplet. The nanowire growth rate is controlled by the arsenic pressure while the diameter depends mainly on the In rate. The contact angle of the In droplet is smaller than that of the Ga droplet involved in the growth of GaAs nanowires, resulting in much lower growth rates. The crystal structure of the VLS grown InAs nanowires is zinc blende with regularly spaced rotational twins forming a twinning superlattice.

6.
Nanotechnology ; 24(8): 085603, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23385879

RESUMO

We report on the technology and growth optimization of GaAs/InAs core/shell nanowires. The GaAs nanowire cores were grown selectively by metal organic vapor phase epitaxy (SA-MOVPE) on SiO(2) masked GaAs (111)B templates. These were structured by a complete thermal nanoimprint lithography process, which is presented in detail. The influence of the subsequent InAs shell growth temperature on the shell morphology and crystal structure was investigated by scanning and transmission electron microscopy in order to obtain the desired homogeneous and uniform InAs overgrowth. At the optimal growth temperature, the InAs shell adopted the morphology and crystal structure of the underlying GaAs core and was perfectly uniform.

7.
Nanotechnology ; 24(3): 035203, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23263179

RESUMO

We investigated the transport properties of GaAs/InAs core/shell nanowires grown by molecular beam epitaxy. Owing to the band alignment between GaAs and InAs, electrons are accumulated in the InAs shell as long as the shell thickness exceeds 12 nm. By performing simulations using a Schrödinger-Poisson solver, it is confirmed that confined states are present in the InAs shell, which are depleted if the shell thickness is below a threshold value. The existence of a tubular-shaped conductor is proved by performing magnetoconductance measurements at low temperatures. Here, flux periodic conductance oscillations are observed which can be attributed to transport in one-dimensional channels based on angular momentum states.

8.
Nanotechnology ; 24(32): 325201, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23863215

RESUMO

Electronic transport properties of InAs nanowires are studied systematically. The nanowires are grown by molecular beam epitaxy on a SiOx-covered GaAs wafer, without using foreign catalyst particles. Room-temperature measurements revealed relatively high resistivity and low carrier concentration values, which correlate with the low background doping obtained by our growth method. Transport parameters, such as resistivity, mobility, and carrier concentration, show a relatively large spread that is attributed to variations in surface conditions. For some nanowires the conductivity has a metal-type dependence on temperature, i.e. decreasing with decreasing temperature, while other nanowires show the opposite temperature behavior, i.e. temperature-activated characteristics. An applied gate voltage in a field-effect transistor configuration can switch between the two types of behavior. The effect is explained by the presence of barriers formed by potential fluctuations.

9.
Nano Lett ; 12(6): 2768-72, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22494319

RESUMO

In this Letter, we present the size effects on charge conduction in InN nanowires by comprehensive transport studies supported by theoretical analysis. A consistent model for highly degenerate narrow gap semiconductor nanowires is developed. In contrast to common knowledge of InN, there is no evidence of an enhanced surface conduction, however, high intrinsic doping exists. Furthermore, the room-temperature resistivity exhibits a strong increase when the lateral size becomes smaller than 80 nm and the temperature dependence changes from metallic to semiconductor-like. This effect is modeled by donor deactivation due to dielectric confinement, yielding a shift of the donor band to higher ionization energies as the size shrinks.


Assuntos
Índio/química , Modelos Químicos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Simulação por Computador , Condutividade Elétrica , Transporte de Elétrons
10.
Nano Lett ; 12(9): 4437-43, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22889199

RESUMO

We report on the conditions necessary for the electrical injection of spin-polarized electrons into indium nitride nanowires synthesized from the bottom up by molecular beam epitaxy. The presented results mark the first unequivocal evidence of spin injection into III-V semiconductor nanowires. Utilizing a newly developed preparation scheme, we are able to surmount shadowing effects during the metal deposition. Thus, we avoid strong local anisotropies that arise if the ferromagnetic leads are wrapping around the nanowire. Using a combination of various complementary techniques, inter alia the local Hall effect, we carried out a comprehensive investigation of the coercive fields and switching behaviors of the cobalt micromagnetic spin probes. This enables the identification of a range of aspect ratios in which the mechanism of magnetization reversal is single domain switching. Lateral nanowire spin valves were prepared. The spin relaxation length is demonstrated to be about 200 nm, which provides an incentive to pursue the route toward nanowire spin logic devices.


Assuntos
Cristalização/métodos , Galvanoplastia/métodos , Índio/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Semicondutores , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
11.
Nano Lett ; 11(9): 3550-6, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21848307

RESUMO

Magnetotransport measurements at low temperatures have been performed on InAs nanowires grown by In-assisted molecular beam epitaxy. Information on the electron phase coherence is obtained from universal conductance fluctuations measured in a perpendicular magnetic field. By analysis of the universal conductance fluctuations pattern of a series of nanowires of different length, the phase-coherence length could be determined quantitatively. Furthermore, indications of a pronounced flux cancelation effect were found, which is attributed to the topology of the nanowire. Additionally, we present measurements in a parallel configuration between wire and magnetic field. In contrast to previous results on InN and InAs nanowires, we do not find periodic oscillations of the magnetoconductance in this configuration. An explanation of this behavior is suggested in terms of the high density of stacking faults present in our InAs wires.

13.
Phys Rev Lett ; 105(24): 246603, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21231543

RESUMO

Optical absorption of circularly polarized light is well known to yield an electron spin polarization in direct band gap semiconductors. We demonstrate that electron spins can even be generated with high efficiency by absorption of linearly polarized light in InxGa(1-x)As. By changing the incident linear polarization direction we can selectively excite spins in both polar and transverse directions. These directions can be identified by the phase during spin precession using time-resolved Faraday rotation. We show that the spin orientations do not depend on the crystal axes suggesting an extrinsic excitation mechanism.

14.
Nanotechnology ; 20(40): 405206, 2009 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-19738304

RESUMO

Electrical transport properties of undoped and n-type doped InN nanowires grown by molecular beam epitaxy were studied by current-voltage and back-gate field-effect transistor measurements. The current-voltage characteristics show ohmic behavior in the temperature range between 4 and 300 K. Down to about 120 K a linear decrease in resistance with temperature is observed. The investigation of a large number of nanowires revealed for undoped as well as doped wires an approximately linear relation between the normalized conductance and diameter for wires with a diameter below 100 nm. This shows that the main conduction takes place in the tubular surface accumulation layer of the wires. In contrast, for doped wires with a diameter larger than 100 nm a quadratic dependence of conduction on the diameter was found, which is attributed to bulk conductance as the main contribution. The successful doping of the wires is confirmed by an enhanced conduction and by the results of the back-gate field-effect transistor measurements.


Assuntos
Condutividade Elétrica , Nanotecnologia/métodos , Nanofios/química , Temperatura
15.
J Phys Condens Matter ; 31(41): 415302, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31220817

RESUMO

We performed scanning gate microscopy measurements on an InAs nanowire at T = 4.2 K in an external magnetic field. We visualizeded non-thermalized electrons passed under narrow metallic contact. It was found that, for such kind of electrons, suppression of the weak antilocalization quantum correction occurs with a magnetic field at least three times smaller than the corresponding one measured for the whole electronic system of the wire.

16.
J Phys Condens Matter ; 29(47): 475601, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29094678

RESUMO

We report on magnetotransport measurements at [Formula: see text] K in a high-quality InAs nanowire ([Formula: see text] kΩ) in the presence of the charged tip of an atomic force microscope serving as a mobile gate. We demonstrate the crucial role of the external magnetic field on the amplitude of the charge density waves with a wavelength of 0.8 µm. The observed suppression rate of their amplitude is similar or slightly higher than the one for weak localization correction in our investigated InAs nanowire.

17.
J Phys Condens Matter ; 28(4): 045301, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26740509

RESUMO

We report on the magnetization of ensembles of etched quantum dots with a lateral diameter of 460 nm, which we prepared from InGaAs/InP heterostructures. The quantum dots exhibit 1/B-periodic de-Haas-van-Alphen-type oscillations in the magnetization M(B) for external magnetic fields B > 2 T, measured by torque magnetometry at 0.3 K. We compare the experimental data to model calculations assuming different confinement potentials and including ensemble broadening effects. The comparison shows that a hard wall potential with an edge depletion width of 100 nm explains the magnetic behavior. Beating patterns induced by Rashba spin-orbit interaction (SOI) as measured in unpatterned and nanopatterned InGaAs/InP heterostructures are not observed for the quantum dots. From our model we predict that signatures of SOI in the magnetization could be observed in larger dots in tilted magnetic fields.

18.
J Phys Condens Matter ; 28(49): 495501, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27749271

RESUMO

Ternary (Bi1-x Sb x )2Te3 films with an Sb content between 0 and 100% were deposited on a Si(1 1 1) substrate by means of molecular beam epitaxy. X-ray diffraction measurements confirm single crystal growth in all cases. The Sb content is determined by x-ray photoelectron spectroscopy. Consistent values of the Sb content are obtained from Raman spectroscopy. Scanning Raman spectroscopy reveals that the (Bi1-x Sb x )2Te3 layers with an intermediate Sb content show spatial composition inhomogeneities. The observed spectra broadening in angular-resolved photoemission spectroscopy (ARPES) is also attributed to this phenomena. Upon increasing the Sb content from x = 0 to 1 the ARPES measurements show a shift of the Fermi level from the conduction band to the valence band. This shift is also confirmed by corresponding magnetotransport measurements where the conductance changes from n- to p-type. In this transition region, an increase of the resistivity is found, indicating a location of the Fermi level within the band gap region. More detailed measurements in the transition region reveals that the transport takes place in two independent channels. By means of a gate electrode the transport can be changed from n- to p-type, thus allowing a tuning of the Fermi level within the topologically protected surface states.

19.
Nanotechnology ; 16(2): 307-11, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21727441

RESUMO

Modulation-doped GaAs v-groove quantum wires (QWRs) have been fabricated with novel electrical contacts made to two-dimensional electron-gas (2DEG) reservoirs. Here, we present longitudinal photocurrent (photoconductivity/PC) spectroscopy measurements of a single QWR. We clearly observe conductance in the ground-state one-dimensional subbands; in addition, a highly temperature-dependent response is seen from other structures within the v-groove. The latter phenomenon is attributed to the effects of structural topography and localization on carrier relaxation. The results of power-dependent PC measurements suggest that the QWR behaves as a series of weakly interacting localized states, at low temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA