Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanoscale Adv ; 5(18): 5036-5044, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37705789

RESUMO

The major stumbling block in the implementation of oxidoreductase enzymes in continuous processes is their stark dependence on costly cofactors that are insoluble in organic solvents. We describe a chemical strategy that allows producing nanobiocatalysts, based on an oxidoreductase enzyme, that performs biocatalytic reactions in hydrophobic organic solvents without external cofactors. The chemical design relies on the use of a silica-based carrier nanoparticle, of which the porosity can be exploited to create an aqueous reservoir containing the cofactor. The nanoparticle core, possessing radial-centred pore channels, serves as a cofactor reservoir. It is further covered with a layer of reduced porosity. This layer serves as a support for the immobilisation of the selected enzyme yet allowing the diffusion of the cofactor from the nanoparticle core. The immobilised enzyme is, in turn, shielded by an organosilica layer of controlled thickness fully covering the enzyme. Such produced nanobiocatalysts are shown to catalyse the reduction of a series of relevant ketones into the corresponding secondary alcohols, also in a continuous flow fashion.

2.
Eur J Med Chem ; 175: 107-113, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31077996

RESUMO

The DNA-repair enzyme MutT homolog 1 (MTH1) is a potential target for a broad range of tumors. Its substrate binding site features a non-catalytical pair of aspartic acids which resembles the catalytic dyad of aspartic proteases. We hypothesized that inhibitors of the latter might be re-targeted for MTH1 despite the two enzyme classes having different substrates and catalyze different reactions. We selected from the crystal structures of holo aspartic proteases a library of nearly 350 inhibitors for in silico screening. Three fragment hits were identified by docking and scoring according to a force field-based energy with continuum dielectric solvation. These fragments showed good ligand efficiency in a colorimetric assay (MW <300 Da and IC50<50µM). Molecular dynamics simulations were carried out for determining the most favorable interaction patterns. On the basis of the simulation results we evaluated in vitro seven commercially available compounds, two of which showed submicromolar potency for MTH1. To obtain definitive evidence of the predicted binding modes we solved the crystal structures of five of the 10 inhibitors predicted in silico. The final step of hit optimization was guided by protein crystallography and involved the synthesis of a single compound, the lead 11, which shows nanomolar affinity for MTH1 in two orthogonal binding assays, and selectivity higher than 2000-fold against its original target (BACE1). The high rate of fragment-hit identification and the fast optimization suggest that ligand retargeting by binding site analogy is an efficient strategy for drug design.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Enzimas Reparadoras do DNA/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Enzimas Reparadoras do DNA/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular , Monoéster Fosfórico Hidrolases/metabolismo , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA