Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
J Am Chem Soc ; 146(18): 12496-12510, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38630640

RESUMO

Nuclear forward scattering (NFS) is a synchrotron-based technique relying on the recoil-free nuclear resonance effect similar to Mössbauer spectroscopy. In this work, we introduce NFS for in situ and operando measurements during electrocatalytic reactions. The technique enables faster data acquisition and better discrimination of certain iron sites in comparison to Mössbauer spectroscopy. It is directly accessible at various synchrotrons to a broad community of researchers and is applicable to multiple metal isotopes. We demonstrate the power of this technique with the hydrogen evolution mechanism of an immobilized iron porphyrin supported on carbon. Such catalysts are often considered as model systems for iron-nitrogen-carbon (FeNC) catalysts. Using in situ and operando NFS in combination with theoretical predictions of spectroscopic data enables the identification of the intermediate that is formed prior to the rate-determining step. The conclusions on the reaction mechanism can be used for future optimization of immobilized molecular catalysts and metal-nitrogen-carbon (MNC) catalysts.

2.
Nucleic Acids Res ; 50(22): 12969-12978, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36533440

RESUMO

Sulfuration of uridine 8, in bacterial and archaeal tRNAs, is catalyzed by enzymes formerly known as ThiI, but renamed here TtuI. Two different classes of TtuI proteins, which possess a PP-loop-containing pyrophosphatase domain that includes a conserved cysteine important for catalysis, have been identified. The first class, as exemplified by the prototypic Escherichia coli enzyme, possesses an additional C-terminal rhodanese domain harboring a second cysteine, which serves to form a catalytic persulfide. Among the second class of TtuI proteins that do not possess the rhodanese domain, some archaeal proteins display a conserved CXXC + C motif. We report here spectroscopic and enzymatic studies showing that TtuI from Methanococcus maripaludis and Pyrococcus furiosus can assemble a [4Fe-4S] cluster that is essential for tRNA sulfuration activity. Moreover, structural modeling studies, together with previously reported mutagenesis experiments of M. maripaludis TtuI, indicate that the [4Fe-4S] cluster is coordinated by the three cysteines of the CXXC + C motif. Altogether, our results raise a novel mechanism for U8-tRNA sulfuration, in which the cluster is proposed to catalyze the transfer of sulfur atoms to the activated tRNA substrate.


Assuntos
Archaea , Cisteína , Proteínas Ferro-Enxofre , RNA de Transferência , Tiossulfato Sulfurtransferase , Archaea/enzimologia , Archaea/genética , Catálise , Cisteína/metabolismo , Proteínas Ferro-Enxofre/metabolismo , RNA de Transferência/metabolismo , Tiossulfato Sulfurtransferase/química , Tiossulfato Sulfurtransferase/genética , Tiossulfato Sulfurtransferase/metabolismo , Motivos de Aminoácidos , Mutagênese , Domínios Proteicos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(32): 19168-19177, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32719135

RESUMO

The emergence of superbugs developing resistance to antibiotics and the resurgence of microbial infections have led scientists to start an antimicrobial arms race. In this context, we have previously identified an active RiPP, the Ruminococcin C1, naturally produced by Ruminococcus gnavus E1, a symbiont of the healthy human intestinal microbiota. This RiPP, subclassified as a sactipeptide, requires the host digestive system to become active against pathogenic Clostridia and multidrug-resistant strains. Here we report its unique compact structure on the basis of four intramolecular thioether bridges with reversed stereochemistry introduced posttranslationally by a specific radical-SAM sactisynthase. This structure confers to the Ruminococcin C1 important clinical properties including stability to digestive conditions and physicochemical treatments, a higher affinity for bacteria than simulated intestinal epithelium, a valuable activity at therapeutic doses on a range of clinical pathogens, mediated by energy resources disruption, and finally safety for human gut tissues.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Clostridiales/química , Peptídeos/química , Peptídeos/farmacologia , Antibacterianos/isolamento & purificação , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Peptídeos/isolamento & purificação
4.
J Am Chem Soc ; 144(38): 17496-17515, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36121382

RESUMO

Iron-sulfur (Fe-S) clusters are prosthetic groups of proteins biosynthesized on scaffold proteins by highly conserved multi-protein machineries. Biosynthesis of Fe-S clusters into the ISCU scaffold protein is initiated by ferrous iron insertion, followed by sulfur acquisition, via a still elusive mechanism. Notably, whether iron initially binds to the ISCU cysteine-rich assembly site or to a cysteine-less auxiliary site via N/O ligands remains unclear. We show here by SEC, circular dichroism (CD), and Mössbauer spectroscopies that iron binds to the assembly site of the monomeric form of prokaryotic and eukaryotic ISCU proteins via either one or two cysteines, referred to the 1-Cys and 2-Cys forms, respectively. The latter predominated at pH 8.0 and correlated with the Fe-S cluster assembly activity, whereas the former increased at a more acidic pH, together with free iron, suggesting that it constitutes an intermediate of the iron insertion process. Iron not binding to the assembly site was non-specifically bound to the aggregated ISCU, ruling out the existence of a structurally defined auxiliary site in ISCU. Characterization of the 2-Cys form by site-directed mutagenesis, CD, NMR, X-ray absorption, Mössbauer, and electron paramagnetic resonance spectroscopies showed that the iron center is coordinated by four strictly conserved amino acids of the assembly site, Cys35, Asp37, Cys61, and His103, in a tetrahedral geometry. The sulfur receptor Cys104 was at a very close distance and apparently bound to the iron center when His103 was missing, which may enable iron-dependent sulfur acquisition. Altogether, these data provide the structural basis to elucidate the Fe-S cluster assembly process and establish that the initiation of Fe-S cluster biosynthesis by insertion of a ferrous iron in the assembly site of ISCU is a conserved mechanism.


Assuntos
Proteínas de Escherichia coli , Proteínas Ferro-Enxofre , Cisteína/química , Proteínas de Escherichia coli/química , Ferro/metabolismo , Proteínas Ferro-Enxofre/química , Compostos de Sulfonilureia , Enxofre/metabolismo
5.
Faraday Discuss ; 234(0): 264-283, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35156974

RESUMO

Transition metal ions have a unique ability to organise and control the steric and electronic effects around a substrate in the active site of a catalyst. We consider half-sandwich Ru(II) (Noyori-type) and Os(II) sulfonyldiamine 16-electron active catalysts [Ru/Os(η6-p-cymene)(TsDPEN-H2)], where TsDPEN is N-tosyl-1,2-diphenylethylenediamine containing S,S or R,R chiral centres, which catalyse the highly efficient asymmetric transfer hydrogenation of aromatic ketones to chiral alcohols using formic acid as a hydride source. We discuss the recognition of the prochiral ketone acetophenone by the catalyst, the protonation of a ligand NH and transfer of hydride from formate to the metal, subsequent transfer of hydride to one enantiotopic face of the ketone, followed by proton transfer from metal-bound NH2, and regeneration of the catalyst. Our DFT calculations illustrate the role of the two chiral carbons on the N,N-chelated sulfonyldiamine ligand, the axial chirality of the π-bonded p-cymene arene, and the chirality of the metal centre. We discuss new features of the mechanism, including how a change in metal chirality of the hydride intermediate dramatically switches p-cymene coordination from η6 to η2. Moreover, the calculations suggest a step-wise mechanism involving substrate docking to the bound amine NH2 followed by hydride transfer prior to protonation of the O-atom of acetophenone and release of the enantio-pure alcohol. This implies that formation and stability of the M-H hydride intermediate is highly dependent on the presence of the protonated amine ligand. The Os(II) catalyst is more stable than the Ru(II) analogue, and these studies illustrate the subtle differences in mechanistic behaviour between these 4d6 and 5d6 second-row and third-row transition metal congeners in group 8 of the periodic table.


Assuntos
Acetofenonas , Cetonas , Catálise , Teoria da Densidade Funcional , Hidrogenação , Cetonas/química , Ligantes
6.
Inorg Chem ; 61(7): 3141-3151, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35142508

RESUMO

Molecular materials that exhibit stimuli-responsive bistability are promising candidates for the development of molecular switches and sensors. We herein report on the coexistence of a wide thermal hysteretic spin crossover (SCO) effect and a thermally inducible metastable high-spin state at low temperatures achieved with the two new complexes [FeII(Lnpdtz)2(NCX)2] (X = S; Se), with Lnpdtz being (2-naphthyl-5-pyridyl-1,2,4-thiadiazole) and X = S (1) and Se (2). Pronounced π-π-stacking of the aromatic side residues of the ligands enables strong intermolecular interactions, leading to abrupt SCO properties and broad magnetic hysteresis of 10 K for X = S and 58 K for X = Se. In this paper, we also present the pressure-induced spin-state switching around 0.8 GPa. A pronounced thermally induced excited spin state trapping (TIESST effect) is observed for the highly cooperative SCO compounds, which was experimentally followed by low-temperature single crystal structure analysis (20 K) and temperature-dependent Mössbauer spectroscopy.

7.
Biochem J ; 478(17): 3281-3295, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34409988

RESUMO

The [4Fe-4S] cluster containing scaffold complex HypCD is the central construction site for the assembly of the [Fe](CN)2CO cofactor precursor of [NiFe]-hydrogenase. While the importance of the HypCD complex is well established, not much is known about the mechanism by which the CN- and CO ligands are transferred and attached to the iron ion. We report an efficient expression and purification system producing the HypCD complex from E. coli with complete metal content. This enabled in-depth spectroscopic characterizations. The results obtained by EPR and Mössbauer spectroscopy demonstrate that the [Fe](CN)2CO cofactor and the [4Fe-4S] cluster of the HypCD complex are redox active. The data indicate a potential-dependent interconversion of the [Fe]2+/3+ and [4Fe-4S]2+/+ couple, respectively. Moreover, ATR FTIR spectroscopy reveals potential-dependent disulfide formation, which hints at an electron confurcation step between the metal centers. MicroScale thermophoresis indicates preferable binding between the HypCD complex and its in vivo interaction partner HypE under reducing conditions. Together, these results provide comprehensive evidence for an electron inventory fit to drive multi-electron redox reactions required for the assembly of the CN- and CO ligands on the scaffold complex HypCD.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Proteínas/metabolismo , Enxofre/metabolismo , Monóxido de Carbono/metabolismo , Domínio Catalítico , Dissulfetos/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Elétrons , Escherichia coli/genética , Íons/metabolismo , Ligantes , Oxirredução , Ligação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Espectroscopia de Mossbauer/métodos
8.
Chemistry ; 27(61): 15171-15179, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34165834

RESUMO

Chiral magnetic materials are proposed for applications in second-order non-linear optics, magneto-chiral dichroism, among others. Recently, we have reported a set of tetra-nuclear Fe(II) grid complex conformers with general formula C/S-[Fe4 L4 ]8+ (L: 2,6-bis(6-(pyrazol-1-yl)pyridin-2-yl)-1,5-dihydrobenzo[1,2-d : 4,5-d']diimidazole). In the grid complexes, isomerism emerges from tautomerism and conformational isomerism of the ligand L, and the S-type grid complex is chiral, which originates from different non-centrosymmetric spatial organization of the trans type ligand around the Fe(II) center. However, the selective preparation of an enantiomerically pure grid complex in a controlled manner is difficult due to spontaneous self-assembly. To achieve the pre-synthesis programmable resolution of Fe(II) grid complexes, we designed and synthesized two novel intrinsically chiral ligands by appending chiral moieties to the parent ligand. The complexation of these chiral ligands with Fe(II) salt resulted in the formation of enantiomerically pure Fe(II) grid complexes, as unambiguously elucidated by CD and XRD studies. The enantiomeric complexes exhibited similar gradual and half-complete thermal and photo-induced SCO characteristics. The good agreement between the experimentally obtained and calculated CD spectra further supports the enantiomeric purity of the complexes and even the magnetic studies. The chiral resolution of Fe(II)- [2×2] grid complexes reported in this study, for the first time, might enable the fabrication of magneto-chiral molecular devices.

9.
Chemistry ; 26(63): 14419-14434, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-32678463

RESUMO

Reaction of 1,2-di(tetrazol-2-yl)ethane (ebtz) with Fe(BF4 )2 ⋅6 H2 O in different nitriles yields one-dimensional coordination polymers [Fe(ebtz)2 (RCN)2 ](BF4 )2 ⋅nRCN (n=2 for R=CH3 (1) and n=0 for R=C2 H5 (2) C3 H7 (3), C3 H5 (4), CH2 Cl (5)) exhibiting spin crossover (SCO). SCO in 1 and 3-5 is complete and occurs above 160 K. In 2, it is shifted to lower temperatures and is accompanied by wide hysteresis (T1/2 ↓ =78 K, T1/2 ↑ =123 K) and proceeds extremely slowly. Isothermal (80 K) time-resolved single-crystal X-ray diffraction studies revealed a complex nature for the HS→LS transition in 2. An initial, slow stage is associated with shrinkage of polymeric chains and with reduction of volume at 77 % (in relation to the difference between cell volumes VHS -VLS ) whereas only 16 % of iron(II) ions change spin state. In the second stage, an abrupt SCO occurs, associated with breathing of the crystal lattice along the direction of the Fe-nitrile bonds, while the nitriles reorient. HS→LS switching triggered by light (808 nm) reveals the coupling of spin state and nitrile orientation. The importance of this coupling was confirmed by studies of [Fe(ebtz)2 (C2 H5 CN/C3 H7 CN)2 ](BF4 )2 mixed crystals (2 a, 2 b), showing a shift of T1/2 to higher values and narrowing of the hysteresis loop concomitant with an increase of the fraction of butyronitrile. This increase reduces the capability of nitrile molecules to reorient. Density functional theory (DFT) studies of models of 1-5 suggest a particular possibility of 2 to adopt a low (140-145°) value of its Fe-N-C(propionitrile) angle.

10.
Angew Chem Int Ed Engl ; 59(23): 8818-8822, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32181552

RESUMO

Synchrotron-based nuclear resonance vibrational spectroscopy (NRVS) using the Mössbauer isotope 161 Dy has been employed for the first time to study the vibrational properties of a single-molecule magnet (SMM) incorporating DyIII , namely [Dy(Cy3 PO)2 (H2 O)5 ]Br3 ⋅2 (Cy3 PO)⋅2 H2 O ⋅2 EtOH. The experimental partial phonon density of states (pDOS), which includes all vibrational modes involving a displacement of the DyIII ion, was reproduced by means of simulations using density functional theory (DFT), enabling the assignment of all intramolecular vibrational modes. This study proves that 161 Dy NRVS is a powerful experimental tool with significant potential to help to clarify the role of phonons in SMMs.

11.
J Am Chem Soc ; 141(47): 18759-18770, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31687818

RESUMO

Treatment of Fe[BF4]2·6H2O with 4,6-di(pyrazol-1-yl)-1H-pyrimid-2-one (HL1) or 4,6-di(4-methylpyrazol-1-yl)-1H-pyrimid-2-one (HL2) affords solvated crystals of [{FeIII(OH2)6}⊂FeII8(µ-L)12][BF4]7 (1, HL = HL1; 2, HL = HL2). The centrosymmetric complexes contain a cubic arrangement of iron(II) centers, with bis-bidentate [L]- ligands bridging the edges of the cube. The encapsulated [Fe(OH2)6]3+ moiety templates the assembly through 12 O-H···O hydrogen bonds to the [L]- hydroxylate groups. All four unique iron(II) ions in the cages are crystallographically high-spin at 250 K, but they undergo a gradual high → low spin-crossover on cooling, which is predominantly centered on one iron(II) site and its symmetry-related congener. This was confirmed by magnetic susceptibility data, light-induced excited spin state trapping (LIESST) effect measurements, and, for 1, Mössbauer spectroscopy and diffuse reflectance data. The clusters are stable in MeCN solution, and 1 remains high-spin above 240 K in that solvent. The cubane assembly was not obtained from reactions using other iron(II) salts or 4,6-di(pyrazol-1-yl)pyrimidine ligands, highlighting the importance of hydrogen bonding in templating the cubane assembly.

12.
J Am Chem Soc ; 141(14): 5753-5765, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30879301

RESUMO

Apd1, a cytosolic yeast protein, and Aim32, its counterpart in the mitochondrial matrix, have a C-terminal thioredoxin-like ferredoxin (TLF) domain and a widely divergent N-terminal domain. These proteins are found in bacteria, plants, fungi, and unicellular pathogenic eukaryotes but not in Metazoa. Our chemogenetic experiments demonstrate that the highly conserved cysteine and histidine residues within the C-X8-C-X24-75-H-X-G-G-H motif of the TLF domain of Apd1 and Aim32 proteins are essential for viability of yeast cells upon treatment with the redox mediators gallobenzophenone or pyrogallol, respectively. UV-vis, EPR, and Mössbauer spectroscopy of purified wild-type Apd1 and three His to Cys variants demonstrated that Cys207 and Cys216 are the ligands of the ferric ion, and His255 and His259 are the ligands of the reducible iron ion of the [2Fe-2S]2+/1+ cluster. The [2Fe-2S] center of Apd1 ( Em,7 = -164 ± 5 mV, p Kox1,2 = 7.9 ± 0.1 and 9.7 ± 0.1) differs from both dioxygenase ( Em,7 ≈ -150 mV, p Kox1,2 = 9.8 and 11.5) and cytochrome bc1/ b6 f Rieske clusters ( Em,7 ≈ +300 mV, p Kox1,2= 7.7 and 9.8). Apd1 and its engineered variants represent an unprecedented flexible system for which a stable [2Fe-2S] cluster with two histidine ligands, (two different) single histidine ligands, or only cysteinyl ligands is possible in the same protein fold. Our results define a remarkable example of convergent evolution of the [2Fe-2S] cluster containing proteins with bishistidinyl coordination.


Assuntos
Ferredoxinas/química , Ferredoxinas/metabolismo , Histidina , Transporte de Elétrons , Domínios Proteicos
13.
Inorg Chem ; 58(1): 769-784, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30576128

RESUMO

The nitrosylation of biological Fe/S clusters to give protein-bound dinitrosyl iron complexes (DNICs) is physiologically important. Biomimetic studies on the reaction of synthetic [2Fe-2S] clusters with NO have so far been limited to diferric model complexes. This work now compares the nitrosylation of [2Fe-2S] clusters with SN- or NN-chelating benzimidazolate/thiophenolate or bis(benzimidazolate) capping ligands in their diferric (12- and 22-) and mixed-valent (FeIIFeIII, 13-, and 23-) forms. Furthermore, the effect of protonation of the imidazole part of the SN ligand has been probed on both the nitrosylation reaction and properties of the resulting DNIC. The reaction of 12- and 22- with 4 equiv NO yields the new anionic {Fe(NO)2}9 DNICs 3- and 4-, respectively, which have been comprehensively characterized, including X-ray crystallography of their PPN+ salts. Nitrosylation of mixed-valent [2Fe-2S] clusters 13- and 23- first leads to slow oxidation to the corresponding diferric congeners, followed by core degradation and DNIC formation. In the case of 23-, a second diferric intermediate very similar to 22- is detected by UV-vis spectroscopy, but could not be further identified. Nitrosylation of 1H2 gives the neutral, N-protonated DNIC 3H, and acid/base titrations show that interconversion between 3- and 3H is reversible. Peripheral ligand protonation leads to a blue shift of the NO stretching vibrations by about 23 cm-1 and a significant shift of the reduction potential to less negative values (Δ E1/2 = 0.26 V), but no effect on 57Fe Mössbauer parameters is observed. Density functional theory calculations based on the structure of 3- indicate that the electronic ground-state properties of 3- and 3H are similar, although the NO(π*) → Fe 3d π-donation is slightly increased and π-backbonding is slightly decreased upon protonation. As a result, protonation has a significant effect on the NO stretching frequencies, but only minor effects on the Fe-(NO)2 modes. This is confirmed by nuclear inelastic scattering of 3- and 3H, which shows no clear influence of protonation on the energy of the Fe-(NO)2 bending and stretching modes occurring in the range 400-600 cm-1, but characteristic changes below 350 cm-1 that reflect perturbation of free rotary motion of the thiophenolate and benzimidazole ring systems of the capping ligand after N-protonation. These findings add to the understanding of [2Fe-2S] cluster nitrosylation and will help to identify DNICs resulting from the reaction of NO with Fe/S cofactors featuring alternative, proton-responsive histidine ligands such as the Rieske and mitoNEET [2Fe-2S] clusters.

14.
Angew Chem Int Ed Engl ; 58(31): 10486-10492, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31179591

RESUMO

Fe-N-C catalysts are very promising materials for fuel cells and metal-air batteries. This work gives fundamental insights into the structural composition of an Fe-N-C catalyst and highlights the importance of an in-depth characterization. By nuclear- and electron-resonance techniques, we are able to show that even after mild pyrolysis and acid leaching, the catalyst contains considerable fractions of α-iron and, surprisingly, iron oxide. Our work makes it questionable to what extent FeN4 sites can be present in Fe-N-C catalysts prepared by pyrolysis at 900 °C and above. The simulation of the iron partial density of phonon states enables the identification of three FeN4 species in our catalyst, one of them comprising a sixfold coordination with end-on bonded oxygen as one of the axial ligands.

15.
Angew Chem Int Ed Engl ; 58(11): 3444-3449, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30548520

RESUMO

Time-domain synchrotron Mössbauer spectroscopy (SMS) based on the Mössbauer effect of 161 Dy has been used to investigate the magnetic properties of a DyIII -based single-molecule magnet (SMM). The magnetic hyperfine field of [Dy(Cy3 PO)2 (H2 O)5 ]Br3 ⋅2 (Cy3 PO)⋅2 H2 O⋅2 EtOH is with B0 =582.3(5) T significantly larger than that of the free-ion DyIII with a 6 H15/2 ground state. This difference is attributed to the influence of the coordinating ligands on the Fermi contact interaction between the s and 4f electrons of the DyIII ion. This study demonstrates that 161 Dy SMS is an effective local probe of the influence of the coordinating ligands on the magnetic structure of Dy-containing compounds.

16.
Angew Chem Int Ed Engl ; 57(19): 5355-5358, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29520940

RESUMO

The iron(IV) oxido complex [(tmc)Fe=O(OTf)]OTf with the macrocyclic ligand 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclo-tetradecane (tmc) has been synthesized using ozone as an oxidant. By adding water to this compound the complex [(H2 O)(tmc)Fe=O)](OTf)2 could be prepared. This complex is important in regard to a better understanding of the reactivity of FeIV oxido complexes. Mössbauer measurements using the solid compound showed an isomer shift of δ=0.19 mm s-1 and a quadrupole splitting ΔEQ =1.38 mm s-1 , confirming the high-valent FeIV state. DFT calculations were performed and led to an assignment of triplet spin multiplicity. Crystallographic characterization of [(H2 O)(tmc)Fe=O)](OTf)2 as well as of starting materials [(tmc)Fe(CH3 CN)](OTf)2 and [(tmc)Fe(OTf)]OTf together with previous results strongly suggest that [(H2 O)(tmc)Fe=O)](OTf)2 was formed similar to the oxido-hydroxido tautomerism analogous to heme systems.

19.
Inorg Chem ; 56(19): 11524-11531, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28914533

RESUMO

While polycarboxylates and hydroxyl-acid complexes have long been known to be photoactive, simple carboxylate complexes which lack a significant LMCT band are not typically strongly photoactive. Hence, it was somewhat surprising that a series of reports demonstrated that materials synthesized from iron(III) and polysaccharides such as alginate (poly[guluronan-co-mannuronan]) or pectate (poly[galacturonan]) formed photoresponsive materials that convert from hydrogels to sols under the influence of visible light. These materials have numerous potential applications in areas such as photopatternable materials, materials for controlled drug delivery, and tissue engineering. Despite the near-identity of the functional units in the polysaccharide ligands, the reactivity of iron(III) hydrogels can depend on the configuration of some chiral centers in the sugar units and in the case of alginate the guluronate to mannuronate block composition, as well as pH. Here, using temperature- and field-dependent transmission Mössbauer spectroscopy, we show that the dominant iron compound detected for both the alginate and pectate gels displays features typical of a polymeric (Fe3+O6) system. The Mössbauer spectra of such systems are strongly dependent on temperature, field, size, and crystallinity, indicative of superparamagnetic relaxation of magnetically ordered nanoparticles. Pectate and alginate hydrogels differ in the size distribution of the iron oxyhydroxy nanoparticles, suggesting that in general smaller nanoparticles are more reactive. Potential biological implications of these results are also discussed.


Assuntos
Alginatos/química , Complexos de Coordenação/química , Compostos de Ferro/química , Nanopartículas/química , Pectinas/química , Hidrogéis , Luz , Fenômenos Magnéticos , Tamanho da Partícula , Espectroscopia de Mossbauer
20.
Phys Chem Chem Phys ; 19(29): 18880-18889, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28702576

RESUMO

Nuclear inelastic scattering (NIS) experiments have been performed in order to study the vibrational dynamics of the low- and high-spin states of the polynuclear 1D spin crossover compound [Fe(1,2,4-triazole)2(1,2,4-triazolato)](BF4) (1). Density functional theory (DFT) calculations using the functional B3LYP* and the basis set CEP-31G for heptameric and nonameric models of the compound yielded the normal vibrations and electronic energies for high-spin and low-spin isomers of three models differing in the distribution of anionic trz- ligands and BF4- anions. On the basis of the obtained energies a structural model with a centrosymmetric Fe(trzH)4(trz-)2 coordination core of the mononuclear unit of the chain is proposed. The obtained distribution of the BF4- counteranions in the proposed structure is similar to that obtained on the basis of X-ray powder diffraction studies by Grossjean et al. (Eur. J. Inorg. Chem., 2013, 796). The NIS data of the system diluted to 10% Fe(ii) content in a 90% Zn(ii) matrix (compound (2)) show a characteristic change of the spectral pattern of the low-spin centres, compared to the low-spin phase of the parent Fe(ii) complex (1). DFT calculations reveal that this is caused by a change of the structure of the neighbours of the low-spin centres. The spectral pattern of the high-spin centres in (2) is within a good approximation identical to that of the high-spin Fe(ii) isomer of (1). The inspection of the molecular orbitals of the monomeric model systems of [Fe(trzH)4(trz-)2] and [Fe(trzH)6], together with calculations of spin transition energies, point towards the importance of an electrostatic effect caused by the negatively charged ligands. This results in the stabilisation of the low-spin state of the complex containing the anionic ligand and shortening of the Fe-N(trz-) compared to the Fe-N(trzH) bond in high-spin, but not in low-spin [Fe(trzH)4(trz-)2].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA