Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
N Engl J Med ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38804514

RESUMO

BACKGROUND: Antibody-mediated rejection is a leading cause of kidney-transplant failure. The targeting of CD38 to inhibit graft injury caused by alloantibodies and natural killer (NK) cells may be a therapeutic option. METHODS: In this phase 2, double-blind, randomized, placebo-controlled trial, we assigned patients with antibody-mediated rejection that had occurred at least 180 days after transplantation to receive nine infusions of the CD38 monoclonal antibody felzartamab (at a dose of 16 mg per kilogram of body weight) or placebo for 6 months, followed by a 6-month observation period. The primary outcome was the safety and side-effect profile of felzartamab. Key secondary outcomes were renal-biopsy results at 24 and 52 weeks, donor-specific antibody levels, peripheral NK-cell counts, and donor-derived cell-free DNA levels. RESULTS: A total of 22 patients underwent randomization (11 to receive felzartamab and 11 to receive placebo). The median time from transplantation until trial inclusion was 9 years. Mild or moderate infusion reactions occurred in 8 patients in the felzartamab group. Serious adverse events occurred in 1 patient in the felzartamab group and in 4 patients in the placebo group; graft loss occurred in 1 patient in the placebo group. After week 24, resolution of morphologic antibody-mediated rejection was more frequent with felzartamab (in 9 of 11 patients [82%]) than with placebo (in 2 of 10 patients [20%]), for a difference of 62 percentage points (95% confidence interval [CI], 19 to 100) and a risk ratio of 0.23 (95% confidence interval [CI], 0.06 to 0.83). The median microvascular inflammation score was lower in the felzartamab group than in the placebo group (0 vs. 2.5), for a mean difference of -1.95 (95% CI, -2.97 to -0.92). Also lower was a molecular score reflecting the probability of antibody-mediated rejection (0.17 vs. 0.77) and the level of donor-derived cell-free DNA (0.31% vs. 0.82%). At week 52, the recurrence of antibody-mediated rejection was reported in 3 of 9 patients who had a response to felzartamab, with an increase in molecular activity and biomarker levels toward baseline levels. CONCLUSIONS: Felzartamab had acceptable safety and side-effect profiles in patients with antibody-mediated rejection. (Funded by MorphoSys and Human Immunology Biosciences; ClinicalTrials.gov number, NCT05021484; and EUDRACT number, 2021-000545-40.).

2.
Ther Drug Monit ; 45(1): 20-25, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36127770

RESUMO

BACKGROUND: The long-term outcomes of solid organ transplantation remain suboptimal. Therefore, appropriate biomarkers are needed in addition to immunosuppressive drugs and other traditional approaches for graft monitoring to achieve personalized immunosuppression and reduce premature graft loss. METHODS: Donor-derived cell-free DNA (dd-cfDNA) is a minimally invasive biomarker of cell death due to graft injury. It can be quantified using droplet digital polymerase chain reaction and next-generation sequencing. Fractional dd-cfDNA determination can be affected by changes in recipient cfDNA, such as those caused by leukopenia or infection, leading to false-positive or false-negative results, respectively. Absolute quantification of dd-cfDNA helps in overcoming this limitation. RESULTS: Overall, there is sufficient evidence of the clinical validity of dd-cfDNA. It detects rejection episodes early at an actionable stage and reflects the severity of graft injury without being rejection-specific. Owing to its high negative predictive value, dd-cfDNA is very useful for ruling out graft injury. Dd-cfDNA complements histological findings and can help in avoiding unnecessary biopsies. It indicates a response to rejection treatment and detects underimmunosuppression. CONCLUSIONS: Monitoring changes in dd-cfDNA over time may be helpful in adapting immunosuppression to prevent graft rejection. Moreover, serial dd-cfDNA determination may increase the effectiveness of transplant recipient surveillance and facilitate personalized immunosuppression when combined with other relevant clinical and diagnostic findings.


Assuntos
Ácidos Nucleicos Livres , Transplante de Rim , Transplante de Órgãos , Humanos , Biomarcadores , Terapia de Imunossupressão , Doadores de Tecidos , Rejeição de Enxerto/diagnóstico , Rejeição de Enxerto/prevenção & controle
3.
Liver Transpl ; 28(12): 1911-1919, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35429207

RESUMO

Personalized immunosuppression (IS) promises to improve the balance of necessary control of alloreactivity and dose-dependent adverse effects of long-term IS such as kidney insufficiency, infections, and malignancies. The majority of liver transplantation (LT) recipients exhibit graft injuries (graft inflammation and/or fibrosis) that are not eligible for an IS reduction according to current Banff criteria, even when liver enzymes are normal or only marginally elevated. This cross-sectional study evaluated the noninvasive prediction of such subclinical graft injuries in surveillance liver biopsies via donor-derived cell-free DNA (dd-cfDNA). Absolute and fractional dd-cfDNA increased stepwise from patients without histological signs of rejection (n = 26) over subclinical graft injury (n = 61), including subclinical T cell-mediated rejection to clinical overt T cell-mediated rejection (n = 21). Thus, fractional plasma dd-cfDNA was significantly elevated paired to surveillance biopsies with relevant subclinical graft injury according to 2016 Banff criteria compared with those with minimal or absent histological graft injury. In contrast, the presence of donor-specific anti-human leukocyte antigen antibodies was not associated with the amount of dd-cfDNA. The sensitivity and specificity of fractional dd-cfDNA to noninvasively predict relevant subclinical graft injury was rather limited with 73% and 52% at the cutoff value of 2.1% fractional dd-cfDNA. The positive predictive value of fractional dd-cfDNA above 2.1% was 76% to noninvasively predict subclinical graft injury, calculated on the prevalence of graft injury in our prospective surveillance biopsy program, whereas the negative predictive values was not predictive (47%). In conclusion, dd-cfDNA has a rather limited diagnostic fidelity in addition to other noninvasive markers for the assessment of subclinical graft injury in personalized IS approaches after LT in a cross-sectional setting.


Assuntos
Ácidos Nucleicos Livres , Transplante de Fígado , Humanos , Rejeição de Enxerto/diagnóstico , Rejeição de Enxerto/epidemiologia , Rejeição de Enxerto/genética , Transplante de Fígado/efeitos adversos , Estudos Transversais , Estudos Prospectivos , Doadores de Tecidos
4.
Cancer Cell Int ; 22(1): 54, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35109825

RESUMO

BACKGROUND: Canine prostate adenocarcinoma (PAC) and transitional cell carcinoma (TCC) are typically characterized by metastasis and chemoresistance. Cell lines are important model systems for developing new therapeutic strategies. However, as they adapt to culturing conditions and undergo clonal selection, they can diverge from the tissue from which they were originally derived. Therefore, a comprehensive characterization of cell lines and their original tissues is paramount. METHODS: This study compared the transcriptomes of nine canine cell lines derived from PAC, PAC metastasis and TCC to their respective original primary tumor or metastasis tissues. Special interests were laid on cell culture-related differences, epithelial to mesenchymal transition (EMT), the prostate and bladder cancer pathways, therapeutic targets in the PI3K-AKT signaling pathway and genes correlated with chemoresistance towards doxorubicin and carboplatin. RESULTS: Independent analyses for PAC, PAC metastasis and TCC revealed 1743, 3941 and 463 genes, respectively, differentially expressed in the cell lines relative to their original tissues (DEGs). While genes associated with tumor microenvironment were mostly downregulated in the cell lines, patient-specific EMT features were conserved. Furthermore, examination of the prostate and bladder cancer pathways revealed extensive concordance between cell lines and tissues. Interestingly, all cell lines preserved downstream PI3K-AKT signaling, but each featured a unique therapeutic target signature. Additionally, resistance towards doxorubicin was associated with G2/M cell cycle transition and cell membrane biosynthesis, while carboplatin resistance correlated with histone, m- and tRNA processing. CONCLUSION: Comparative whole-transcriptome profiling of cell lines and their original tissues identifies models with conserved therapeutic target expression. Moreover, it is useful for selecting suitable negative controls, i.e., cell lines lacking therapeutic target expression, increasing the transfer efficiency from in vitro to primary neoplasias for new therapeutic protocols. In summary, the dataset presented here constitutes a rich resource for canine prostate and bladder cancer research.

5.
Int J Mol Sci ; 22(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34768937

RESUMO

Prostate cancer (PCa) in dogs is a highly malignant disease akin to its human counterpart. In contrast to the situation in humans, multi-gene approaches facilitating risk stratification of canine PCa are barely established. The aims of this study were the characterization of the transcriptional landscape of canine PCa and the identification of diagnostic, prognostic and/or therapeutic biomarkers through a multi-step screening approach. RNA-Sequencing of ten malignant tissues and fine-needle aspirations (FNA), and 14 nonmalignant tissues and FNAs was performed to find differentially expressed genes (DEGs) and deregulated pathways. The 4098 observed DEGs were involved in 49 pathways. These 49 pathways could be grouped into five superpathways summarizing the hallmarks of canine PCa: (i) inflammatory response and cytokines; (ii) regulation of the immune system and cell death; (iii) cell surface and PI3K signaling; (iv) cell cycle; and (v) phagosome and autophagy. Among the highly deregulated, moderately to strongly expressed DEGs that were members of one or more superpathways, 169 DEGs were listed in relevant databases and/or the literature and included members of the PCa pathway, oncogenes, prostate-specific genes, and druggable genes. These genes are novel and promising candidate diagnostic, prognostic and/or therapeutic canine PCa biomarkers.


Assuntos
Biomarcadores Tumorais/genética , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Neoplasias da Próstata/patologia , RNA-Seq/métodos , Transcriptoma , Animais , Cães , Perfilação da Expressão Gênica , Masculino , Neoplasias da Próstata/genética
6.
Clin Chem ; 66(10): 1290-1299, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33001185

RESUMO

BACKGROUND: Donor-derived cell-free DNA (dd-cfDNA) is reportedly a valuable tool for graft surveillance following kidney transplantation (KTx). Possible changes in dd-cfDNA(%) reference values over time have not been evaluated. For long-term monitoring after KTx, changes in host cfDNA might represent a biasing factor in dd-cfDNA(%) determinations. METHODS: Plasma samples were obtained (n = 929) 12-60 months after engraftment in a cross-sectional cohort of 303 clinically stable KTx recipients. Total cfDNA(copies/mL), dd-cfDNA(%), and dd-cfDNA(copies/mL) were determined using droplet-digital PCR. Stability of threshold values in these stable KTx recipients over time was assessed by 80th, 85th, and 90th quantile regression. RESULTS: Upper percentiles of total cfDNA showed a significant decline of -1902, -3589, and -4753 cp/mL/log(month) (P = 0.014, <0.001, and 0.017, respectively), resulting in increasing dd-cfDNA(%) percentiles by 0.25, 0.46, and 0.72%/log(month) (P = 0.04, 0.001, and 0.002, respectively), with doubling of the 85th percentile value by 5 years. In contrast, dd-cfDNA(cp/mL) was stable during the observation period (P = 0.52, 0.29, and 0.39). In parallel increasing white blood cell counts and decreasing tacrolimus concentrations over time were observed. After 5 years, the median total cfDNA was still 1.6-fold (P < 0.001) higher in KTx recipients than in healthy controls (n = 135) and 1.4-fold (P < 0.001) higher than patients with other medical conditions (n = 364). CONCLUSIONS: The time-dependent decrease of host cfDNA resulted in an apparent increase of dd-cfDNA fraction in stable KTx patients. For long-term surveillance, measurement of absolute dd-cfDNA concentrations appears to be superior to percentages to minimize false positive results.


Assuntos
Ácidos Nucleicos Livres/metabolismo , Transplante de Rim/estatística & dados numéricos , Ácidos Nucleicos Livres/sangue , Estudos de Coortes , Estudos Transversais , Humanos , Estudos Prospectivos , Fatores de Tempo
7.
Int J Mol Sci ; 21(2)2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31963602

RESUMO

We have identified a Holstein sire named Tarantino who had been approved for artificial insemination that is based on normal semen characteristics (i.e., morphology, thermoresistance, motility, sperm concentration), but had no progeny after 412 first inseminations, resulting in a non-return rate (NRdev) of -29. Using whole genome association analysis and next generation sequencing, an associated nonsense variant in the α/ß-hydrolase domain-containing 16B gene (ABHD16B) on bovine chromosome 13 was identified. The frequency of the mutant allele in the German Holstein population was determined to be 0.0018 in 222,645 investigated cattle specimens. The mutant allele was traced back to Whirlhill Kingpin (bornFeb. 13th, 1959) as potential founder. The expression of ABHD16B was detected by Western blotting and immunohistochemistry in testis and epididymis of control bulls. A lipidome comparison of the plasma membrane of fresh semen from carriers and controls showed significant differences in the concentration of phosphatidylcholine (PC), diacylglycerol (DAG), ceramide (Cer), sphingomyelin (SM), and phosphatidylcholine (-ether) (PC O-), indicating that ABHD16B plays a role in lipid biosynthesis. The altered lipid contents may explain the reduced fertilization ability of mutated sperms.


Assuntos
Membrana Celular/metabolismo , Fertilização , Hidrolases/metabolismo , Inseminação Artificial/veterinária , Lipídeos/análise , Mutação , Espermatozoides/metabolismo , Animais , Bovinos , Feminino , Estudo de Associação Genômica Ampla , Hidrolases/genética , Inseminação Artificial/métodos , Lipídeos/química , Masculino , Análise do Sêmen/veterinária , Motilidade dos Espermatozoides
8.
Am J Transplant ; 19(11): 3087-3099, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31062511

RESUMO

Donor-derived cell-free DNA (dd-cfDNA) is a noninvasive biomarker for comprehensive monitoring of allograft injury and rejection in kidney transplantation (KTx). dd-cfDNA quantification of copies/mL plasma (dd-cfDNA[cp/mL]) was compared to dd-cfDNA fraction (dd-cfDNA[%]) at prespecified visits in 189 patients over 1 year post KTx. In patients (N = 15, n = 22 samples) with biopsy-proven rejection (BPR), median dd-cfDNA(cp/mL) was 3.3-fold and median dd-cfDNA(%) 2.0-fold higher (82 cp/mL; 0.57%, respectively) than medians in Stable Phase patients (N = 83, n = 408) without rejection (25 cp/mL; 0.29%). Results for acute tubular necrosis (ATN) were not significantly different from those with biopsy-proven rejection (BPR). dd-cfDNA identified unnecessary biopsies triggered by a rise in plasma creatinine. Receiver operating characteristic (ROC) analysis showed superior performance (P = .02) of measuring dd-cfDNA(cp/mL) (AUC = 0.83) compared to dd-cfDNA(%) (area under the curve [AUC] = 0.73). Diagnostic odds ratios were 7.31 for dd-cfDNA(cp/mL), and 6.02 for dd-cfDNA(%) at thresholds of 52 cp/mL and 0.43%, respectively. Plasma creatinine showed a low correlation (r = 0.37) with dd-cfDNA(cp/mL). In a patient subset (N = 24) there was a significantly higher rate of patients with elevated dd-cfDNA(cp/mL) with lower tacrolimus levels (<8 µg/L) compared to the group with higher tacrolimus concentrations (P = .0036) suggesting that dd-cfDNA may detect inadequate immunosuppression resulting in subclinical graft damage. Absolute dd-cfDNA(cp/mL) allowed for better discrimination than dd-cfDNA(%) of KTx patients with BPR and is useful to avoid unnecessary biopsies.


Assuntos
Biomarcadores/análise , Ácidos Nucleicos Livres/genética , Rejeição de Enxerto/diagnóstico , Falência Renal Crônica/cirurgia , Transplante de Rim/efeitos adversos , Doadores de Tecidos/provisão & distribuição , Ácidos Nucleicos Livres/análise , Feminino , Seguimentos , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/patologia , Sobrevivência de Enxerto , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Curva ROC , Fatores de Risco
9.
Ther Drug Monit ; 41(2): 115-120, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30883505

RESUMO

Genomic analyses in oncologic care allow for the development of more precise clinical laboratory tests that will be critical for personalized pharmacotherapy. Traditional biopsy-based approaches are limited by the availability of sequential tissue specimens to detect resistance. Blood-based genomic profiling ("liquid biopsy") is useful for longitudinal monitoring of tumor genomes and can complement biopsies. Tumor-associated mutations can be identified in cell-free tumor DNA (ctDNA) from patient blood samples and used for monitoring disease activity. The US Food and Drug Administration approved a liquid biopsy test for EGFR-activating mutations in patients with non-small-cell lung cancer as a companion diagnostic for therapy selection. ctDNA also allows for the identification of mutations selected by treatment such as EGFR T790M in non-small-cell lung cancer. ctDNA can also detect mutations such as KRAS G12V in colorectal cancer and BRAF V600E/V600K in melanoma. Chromosomal aberration pattern analysis by low-coverage whole genome sequencing is a new, broader approach. Genomic imbalances detected in cell-free DNA (cfDNA) can be used to compute a copy number instability (CNI) score. In clinical studies, it was demonstrated that the change in CNI score can serve as an early predictor of therapeutic response to chemotherapy/immunotherapy of many cancer types. In multivariable models, it could be shown that the CNI score was superior to clinical parameters for prediction of overall survival in patients with head and neck cancer. There is emerging evidence for the clinical validity of ctDNA testing regarding identification of candidates for targeted therapies, prediction of therapeutic response, early detection of recurrence, resistance mutation detection, measuring genetic heterogeneity, tumor burden monitoring, and risk stratification. Improvement of sensitivity to detect tumors at very early stages is difficult due to insufficient mutant DNA fraction of ≤0.01%. Further developments will include validation in prospective multicenter interventional outcome studies and the development of digital platforms to integrate diagnostic data.


Assuntos
Ácidos Nucleicos Livres/sangue , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Medicina de Precisão/métodos , Prognóstico , Humanos
10.
Clin Chem ; 64(6): 959-970, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29661793

RESUMO

BACKGROUND: Clinicians face many challenges in disease stratification and outcome prediction in head and neck squamous cancer cell (HNSCC) patients. Given the limitations of currently used clinical scoring, repetitive biopsies, and imaging techniques, liquid biopsy approaches may provide valuable additional diagnostic and prognostic information. METHODS: A noninterventional, single-center observational study was performed with clinical data and plasma samples from HNSCC patients. Cell-free tumor DNA-derived copy number aberrations (CNAs) were determined in 116 patients by low-coverage next-generation sequencing (NGS). Significant CNAs were combined in a genome-wide copy number instability score (CNI), which was evaluated with respect to conventional clinical staging and patient outcome. RESULTS: Receiver-operating characteristic (ROC) curve analysis comparing the presurgery CNI in patients (n = 103) with that in tumor-free controls (n = 142) yielded an area under the ROC curve of 87.2% (95% CI, 79.4%-93.3%). At a specificity of 95%, the sensitivity to detect tumors varied between 46% (pT1) and 94% (pT4). A CNI above the median (i.e., >72) had a positive predictive value of 90% (95% CI, 79%-96%) for lymph node involvement (LNI), while the negative predictive value was 57% (95% CI, 43%-70%). For a CNI >72, overall survival (OS) was worse (hazard ratio, 4.89; 95% CI, 1.39-17.17; P = 0.01) with 62% and 90% survivors 3 years after surgery for a CNI >72 and ≤72, respectively. In multivariable models, the CNI was a superior predictor of OS compared to established disease features, including LNI. CONCLUSIONS: The CNI may assist in predicting LNI and prognosis in HNSCC with direct therapeutic implications concerning the need for neck dissection or more aggressive treatment.


Assuntos
Carcinoma de Células Escamosas/patologia , Ácidos Nucleicos Livres/isolamento & purificação , Neoplasias de Cabeça e Pescoço/patologia , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/terapia , Estudos de Casos e Controles , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/terapia , Humanos , Biópsia Líquida , Estadiamento de Neoplasias , Prognóstico , Curva ROC , Resultado do Tratamento
11.
BMC Genomics ; 18(1): 531, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28705237

RESUMO

BACKGROUND: In Nile tilapia sex determination is governed by a male heterogametic system XX/XY either on LG1 or LG23. The latter carries a Y-specific duplicate of the amh gene, which is a testis-determining factor. Allelic variants in the amh gene demonstrated to be major triggers for autosomal and temperature-dependent sex reversal. Further, QTL on LG23 and LG20 show a temperature-responsiveness with influence on the phenotypic sex relative to the sex chromosomes. Here we present a ddRADseq based approach to identify genomic regions that show unusual large differentiation in terms of fixation index (FST) between temperature-treated pseudomales and non-masculinized females using a comparative genome-scan. Genome-wide associations were identified for the temperature-dependent sex using a genetically all-female population devoid of amh-ΔY. RESULTS: Twenty-two thousand three hundred ninety-two SNPs were interrogated for the comparison of temperature-treated pseudomales and females, which revealed the largest differentiation on LG23. Outlier FST-values (0.35-0.44) were determined for six SNPs in the genomic interval (9,190,077-11,065,693) harbouring the amh gene (9,602,693-9,605,808), exceeding the genome-wide low FST of 0.013. Association analysis with a set of 9104 selected SNPs confirmed that the same genomic region on LG23 exerts a significant effect on the temperature-dependent sex. CONCLUSIONS: This study highlights the role of LG23 in sex determination, harbouring major determinants for temperature-dependent sex reversal in Nile tilapia. Furthermore FST outlier detection proves a powerful tool for detection of sex-determining regions in fish genomes.


Assuntos
Ciclídeos/genética , Genômica , Processos de Determinação Sexual/genética , Temperatura , Animais , Mapeamento Cromossômico , Feminino , Loci Gênicos/genética , Genótipo , Masculino
12.
Crit Rev Clin Lab Sci ; 54(3): 205-218, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28393575

RESUMO

High-quality genomic analysis is critical for personalized pharmacotherapy in patients with cancer. Tumor-specific genomic alterations can be identified in cell-free DNA (cfDNA) from patient blood samples and can complement biopsies for real-time molecular monitoring of treatment, detection of recurrence, and tracking resistance. cfDNA can be especially useful when tumor tissue is unavailable or insufficient for testing. For blood-based genomic profiling, next-generation sequencing (NGS) and droplet digital PCR (ddPCR) have been successfully applied. The US Food and Drug Administration (FDA) recently approved the first such "liquid biopsy" test for EGFR mutations in patients with non-small cell lung cancer (NSCLC). Such non-invasive methods allow for the identification of specific resistance mutations selected by treatment, such as EGFR T790M, in patients with NSCLC treated with gefitinib. Chromosomal aberration pattern analysis by low coverage whole genome sequencing is a more universal approach based on genomic instability. Gains and losses of chromosomal regions have been detected in plasma tumor-specific cfDNA as copy number aberrations and can be used to compute a genomic copy number instability (CNI) score of cfDNA. A specific CNI index obtained by massive parallel sequencing discriminated those patients with prostate cancer from both healthy controls and men with benign prostatic disease. Furthermore, androgen receptor gene aberrations in cfDNA were associated with therapeutic resistance in metastatic castration resistant prostate cancer. Change in CNI score has been shown to serve as an early predictor of response to standard chemotherapy for various other cancer types (e.g. NSCLC, colorectal cancer, pancreatic ductal adenocarcinomas). CNI scores have also been shown to predict therapeutic responses to immunotherapy. Serial genomic profiling can detect resistance mutations up to 16 weeks before radiographic progression. There is a potential for cost savings when ineffective use of expensive new anticancer drugs is avoided or halted. Challenges for routine implementation of liquid biopsy tests include the necessity of specialized personnel, instrumentation, and software, as well as further development of quality management (e.g. external quality control). Validation of blood-based tumor genomic profiling in additional multicenter outcome studies is necessary; however, cfDNA monitoring can provide clinically important actionable information for precision oncology approaches.


Assuntos
Biomarcadores Tumorais/sangue , DNA/sangue , Genômica/métodos , Medicina de Precisão/métodos , Neoplasias da Próstata , Biomarcadores Tumorais/genética , DNA/química , Instabilidade Genômica , Humanos , Masculino , Neoplasias da Próstata/sangue , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia
13.
Lab Invest ; 97(7): 863-872, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28436954

RESUMO

Analysis of specific DNA alterations in precision medicine of tumors is crucially important for molecular targeted treatments. Lung cancer is a prototypic example and one of the leading causes of cancer-related deaths worldwide. One major technical problem of detecting DNA alterations in tissue samples is cellular heterogeneity, that is, mixture of tumor and normal cells. Microdissection is an important tool to enrich tumor cells from heterogeneous tissue samples. However, conventional laser capture microdissection has several disadvantages like user-dependent selection of regions of interest (ROI), high costs for dissection systems and long processing times. ROI selection in expression-based microdissection (xMD) directly relies on cancer cell-specific immunostaining. Whole-slide irradiation leads to localized energy absorption at the sites of most intensive staining and melting of a membrane covering the slide, so that tumor cells can be isolated by removing the complete membrane. In this study, we optimized xMD of lung cancer tissue by enhancing staining intensity of tumor cell-specific immunostaining and processing of the stained samples. This optimized procedure did not alter DNA quality and resulted in enrichment of mutated EGFR DNA from lung adenocarcinoma specimens after xMD. We here also introduce a quality control protocol based on digital whole-slide scanning and image analysis before and after xMD to quantify selectivity and efficiency of the procedure. In summary, this study provides a workflow for xMD, adapted and tested for lung cancer tissue that can be used for lung tumor cell dissection before diagnostic or investigatory analyses.


Assuntos
Adenocarcinoma/genética , DNA/genética , Imuno-Histoquímica/métodos , Neoplasias Pulmonares/genética , Microdissecção/métodos , Adenocarcinoma/química , Adenocarcinoma/metabolismo , Adenocarcinoma de Pulmão , DNA/análise , Formaldeído , Humanos , Pulmão/química , Neoplasias Pulmonares/química , Neoplasias Pulmonares/metabolismo , Técnicas de Diagnóstico Molecular , Mutação/genética , Coloração e Rotulagem , Fixação de Tecidos
14.
PLoS Med ; 14(4): e1002286, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28441386

RESUMO

BACKGROUND: Graft-derived cell-free DNA (GcfDNA), which is released into the blood stream by necrotic and apoptotic cells, is a promising noninvasive organ integrity biomarker. In liver transplantation (LTx), neither conventional liver function tests (LTFs) nor immunosuppressive drug monitoring are very effective for rejection monitoring. We therefore hypothesized that the quantitative measurement of donor-derived cell-free DNA (cfDNA) would have independent value for the assessment of graft integrity, including damage from acute rejection. METHODS AND FINDINGS: Traditional LFTs were performed and plasma GcfDNA was monitored in 115 adults post-LTx at three German transplant centers as part of a prospective, observational, multicenter cohort trial. GcfDNA percentage (graft cfDNA/total cfDNA) was measured using droplet digital PCR (ddPCR), based on a limited number of predefined single nucleotide polymorphisms, enabling same-day turn-around. The same method was used to quantify blood microchimerism. GcfDNA was increased >50% on day 1 post-LTx, presumably from ischemia/reperfusion damage, but rapidly declined in patients without graft injury within 7 to 10 d to a median <10%, where it remained for the 1-y observation period. Of 115 patients, 107 provided samples that met preestablished criteria. In 31 samples taken from 17 patients during biopsy-proven acute rejection episodes, the percentage of GcfDNA was elevated substantially (median 29.6%, 95% CI 23.6%-41.0%) compared with that in 282 samples from 88 patients during stable periods (median 3.3%, 95% CI 2.9%-3.7%; p < 0.001). Only slightly higher values (median 5.9%, 95% CI 4.4%-10.3%) were found in 68 samples from 17 hepatitis C virus (HCV)-positive, rejection-free patients. LFTs had low overall correlations (r = 0.28-0.62) with GcfDNA and showed greater overlap between patient subgroups, especially between acute rejection and HCV+ patients. Multivariable logistic regression modeling demonstrated that GcfDNA provided additional LFT-independent information on graft integrity. Diagnostic sensitivity and specificity were 90.3% (95% CI 74.2%-98.0%) and 92.9% (95% CI 89.3%-95.6%), respectively, for GcfDNA at a threshold value of 10%. The area under the receiver operator characteristic curve was higher for GcfDNA (97.1%, 95% CI 93.4%-100%) than for same-day conventional LFTs (AST: 95.7%; ALT: 95.2%; γ-GT: 94.5%; bilirubin: 82.6%). An evaluation of microchimerism revealed that the maximum donor DNA in circulating white blood cells was only 0.068%. GcfDNA percentage can be influenced by major changes in host cfDNA (e.g., due to leukopenia or leukocytosis). One limitation of our study is that exact time-matched GcfDNA and LFT samples were not available for all patient visits. CONCLUSIONS: In this study, determination of GcfDNA in plasma by ddPCR allowed for earlier and more sensitive discrimination of acute rejection in LTx patients as compared with conventional LFTs. Potential blood microchimerism was quantitatively low and had no significant influence on GcfDNA value. Further research, which should ideally include protocol biopsies, will be needed to establish the practical value of GcfDNA measurements in the management of LTx patients.


Assuntos
DNA/sangue , Rejeição de Enxerto/sangue , Transplante de Fígado , Adulto , Idoso , Área Sob a Curva , Biomarcadores/sangue , Quimerismo , Feminino , Alemanha , Rejeição de Enxerto/diagnóstico , Hepacivirus , Humanos , Leucócitos/metabolismo , Testes de Função Hepática , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Curva ROC
15.
Blood ; 125(12): 1936-47, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25605370

RESUMO

Acute myeloid leukemia (AML) is driven by niche-derived and cell-autonomous stimuli. Although many cell-autonomous disease drivers are known, niche-dependent signaling in the context of the genetic disease heterogeneity has been difficult to investigate. Here, we analyzed the role of Bruton tyrosine kinase (BTK) in AML. BTK was frequently expressed, and its inhibition strongly impaired the proliferation and survival of AML cells also in the presence of bone marrow stroma. By interactome analysis, (phospho)proteomics, and transcriptome sequencing, we characterized BTK signaling networks. We show that BTK-dependent signaling is highly context dependent. In Fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD)-positive AML, BTK mediates FLT3-ITD-dependent Myc and STAT5 activation, and combined targeting of FLT3-ITD and BTK showed additive effects. In Fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD)-negative AML, BTK couples Toll-like receptor 9 (TLR9) activation to nuclear factor κΒ and STAT5. Both BTK-dependent transcriptional programs were relevant for cell cycle progression and apoptosis regulation. Thus, we identify context-dependent oncogenic driver events that may guide subtype-specific treatment strategies and, for the first time, point to a role of TLR9 in AML. Clinical evaluation of BTK inhibitors in AML seems warranted.


Assuntos
Leucemia Mieloide Aguda/imunologia , Proteínas Tirosina Quinases/metabolismo , Receptor Toll-Like 9/metabolismo , Tirosina Quinase 3 Semelhante a fms/metabolismo , Adulto , Tirosina Quinase da Agamaglobulinemia , Apoptose , Células da Medula Óssea/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Ativação Enzimática , Regulação Leucêmica da Expressão Gênica , Humanos , Imuno-Histoquímica , Leucemia Mieloide Aguda/metabolismo , Espectrometria de Massas , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Fosforilação , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Tirosina/química , Adulto Jovem
16.
BMC Genet ; 18(1): 30, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28356055

RESUMO

BACKGROUND: Eye pigmentation abnormalities in cattle are often related to albinism, Chediak-Higashi or Tietz like syndrome. However, mutations only affecting pigmentation of coat color and eye have also been described. Herein 18 Holstein Friesian cattle affected by bicolored and hypopigmented irises have been investigated. RESULTS: Affected animals did not reveal any ophthalmological or neurological abnormalities besides the specific iris color differences. Coat color of affected cattle did not differ from controls. Histological examination revealed a reduction of melanin pigment in the iridal anterior border layer and stroma in cases as cause of iris hypopigmentation. To analyze the genetics of the iris pigmentation differences, a genome-wide association study was performed using Illumina BovineSNP50 BeadChip genotypes of the 18 cases and 172 randomly chosen control animals. A significant association on bovine chromosome 8 (BTA8) was identified at position 60,990,733 with a -log10(p) = 9.17. Analysis of genotypic and allelic dependences between cases of iridal hypopigmentation and an additional set of 316 randomly selected Holstein Friesian cattle controls showed that allele A at position 60,990,733 on BTA8 (P = 4.0e-08, odds ratio = 6.3, 95% confidence interval 3.02-13.17) significantly increased the chance of iridal hypopigmentation. CONCLUSIONS: The clinical appearance of the iridal hypopigmentation differed from previously reported cases of pigmentation abnormalities in syndromes like Chediak-Higashi or Tietz and seems to be mainly of cosmetic character. Iridal hypopigmentation is caused by a reduced content of melanin pigment in the anterior border layer and iridal stroma. A single genomic position on BTA8 was detected to be significantly associated with iridal hypopigmentation in examined cattle. To our knowledge this is the first report about this phenotype in Holstein Friesian cattle.


Assuntos
Doenças dos Bovinos/genética , Cromossomos de Mamíferos/genética , Estudo de Associação Genômica Ampla/veterinária , Hipopigmentação/veterinária , Doenças da Íris/veterinária , Animais , Estudos de Casos e Controles , Bovinos , Feminino , Predisposição Genética para Doença , Hipopigmentação/genética , Doenças da Íris/genética , Masculino , Análise de Sequência com Séries de Oligonucleotídeos/veterinária , Fenótipo
17.
BMC Genet ; 17: 18, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26747197

RESUMO

BACKGROUND: Methods for parentage control in cattle have changed since their initial implementation in the late 1950's from blood group typing to more current single nucleotide polymorphism determination. In the early 1990's, 12 microsatellites were selected by the International Society for Animal Genetics based on their informativeness and robustness in a variety of different cattle breeds. Since then this panel is used as standard in cattle herd book breeding and its application is accompanied by recurrent international comparison tests ensuring permanent validity for the most common commercial dairy and beef cattle breeds for example Holstein Friesian, Simmental, Angus, and Hereford. Although, nearly every parentage can be resolved using these microsatellites, cases with very close relatives became an emerging resolution problem during recent years. This is mainly due to an increase of monomorphism and a trend to the fixation of alleles, although no direct selection against their variability was applied. Thus other effects must be presumed resulting in a loss of polymorphism information content, heterozygosity, and exclusion probabilities. RESULTS: To determine changes of allele frequencies and exclusion probabilities, we analyzed the development of these parameters for the 12 microsatellites from 2004 to 2014. One hundred sixty eight thousand recorded Holstein Friesian cattle genotypes were evaluated. During this period certain alleles of nine microsatellites increased significantly (t-values >5). When calculating the exclusion probabilities for 11 microsatellites, reduction was determined for the three situations, i.e. one parent is wrongly identified (p = 0.01), both parents are wrongly identified (p = 0.005), and the genotype of one parent is missing (p = 0.048). With the addition of BM1818 to the marker set in 2009, this development was corrected leading to significant increases in exclusion probabilities. Although, the exclusion probabilities for the three family situations using the 12 microsatellites are >99%, the clarification of 142 relationships in 40,000 situations where one parent is missing will still be impossible. Twenty-five sires were identified that are responsible for the most significant microsatellite allele increases in the population. The corresponding alleles are mainly associated with milk protein and fat yield, body weight at birth and weaning, as well as somatic cell score, milk fat percentage, and longissimus muscle area. CONCLUSIONS: Our data show that most of the microsatellites used for parentage control in cattle show directional changes in allele frequencies consistent with the history of artificial selection in the German Holstein population.


Assuntos
Bovinos/genética , Frequência do Gene , Repetições de Microssatélites , Linhagem , Animais , Cruzamento , Feminino , Genótipo , Masculino
18.
Ther Drug Monit ; 38 Suppl 1: S75-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26418703

RESUMO

Although short-term success after solid organ transplantation is good, long-term graft and recipient survival are both not satisfactory. Despite therapeutic drug monitoring (TDM) of immunosuppressive drugs (ISDs), both excessive and insufficient immunosuppression still do occur. There is a need for new biomarkers that, when combined with TDM, can be used to provide more effective and less toxic, personalized immunosuppression to improve long-term survival. Currently used methods are insufficient to rapidly, cost-effectively, and directly interrogate graft integrity after solid organ transplantation. However, because organ transplants are also genome transplants, measurement of graft-derived circulating cell-free DNA (GcfDNA) has shown promise as a way to improve both graft and recipient outcomes after solid organ transplantation through the early detection of severe graft injury, enabling an early intervention. A newly developed droplet digital polymerase chain reaction (ddPCR) method has advantages over expensive high-throughput sequencing methods to rapidly quantify GcfDNA percentages and absolute amounts. This procedure does not require donor DNA and therefore can be applied to any organ donor/recipient pair. The droplet digital polymerase chain reaction method allows for the early, sensitive, specific, and cost-effective direct assessment of graft integrity and can be used to define individual responses to ISDs including the minimal ISD exposures necessary to prevent rejection. This is especially important in patients undergoing ISD switches due to ISD toxicity, infections, or malignancies. Although prospective, multicenter clinical trials in liver, heart, and kidney transplantation have not been completed, early results suggest that GcfDNA can be combined with TDM to guide changes in immunosuppression to provide more effective, and less toxic treatment. Personalized immunosuppression will shift emphasis in transplantation from reaction to prevention and could improve outcome at lower health care costs.


Assuntos
Biomarcadores/sangue , DNA/sangue , Rejeição de Enxerto/sangue , Rejeição de Enxerto/genética , Rejeição de Enxerto/tratamento farmacológico , Sobrevivência de Enxerto , Humanos , Imunossupressores/uso terapêutico
19.
Clin Chem ; 61(1): 239-48, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25348670

RESUMO

BACKGROUND: Genomic instability resulting in copy number variation is a hallmark of malignant transformation and may be identified through massive parallel sequencing. Tumor-specific cell free DNA (cfDNA) present in serum and plasma provides a real-time, easily accessible surrogate. METHODS: DNA was extracted from serum of 204 patients with prostate cancer (Gleason score 2-10), 207 male controls, and patients with benign hyperplasia (n = 10) and prostatitis (n = 10). DNA was amplified by use of random primers, tagged with molecular identifiers, sequenced on a SOLID system, and aligned to the human genome. We evaluated the number of sequence reads of cfDNA in sliding 100-kbp intervals for variation from controls. We used chromosomal regions with significant variations in alignment hits for their ability to segregate patients and matched controls. RESULTS: Using ROC curves to assess diagnostic performance, we evaluated the number of regions in a first subset (n = 177), with variations in alignment hits alone, provided an area under the curve (AUC) of 0.81 (95% CI 0.7-0.9, P < 0.001). Using 5 rounds of 10-fold cross-validation with the full data set, we established a final model that discriminated prostate cancer from controls with an AUC of 0.92 (0.87-0.95), reaching a diagnostic accuracy of 83%. Both benign prostatic hypertrophy and prostatitis could be distinguished from prostate cancer by use of cfDNA, with an accuracy of 90%. CONCLUSIONS: Assessment of a limited number of chromosomal structural instabilities by use of massive parallel sequencing of cfDNA was sufficient to distinguish between prostate cancer and controls. This large cohort demonstrates the utility of cfDNA in prostate cancer recently established in other malignant neoplasms.


Assuntos
Biomarcadores Tumorais/sangue , Instabilidade Cromossômica , DNA de Neoplasias/sangue , Neoplasias da Próstata/sangue , Neoplasias da Próstata/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Estudos de Casos e Controles , Variações do Número de Cópias de DNA , DNA de Neoplasias/genética , Heterogeneidade Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Calicreínas/sangue , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/patologia
20.
Genet Sel Evol ; 47: 3, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25651826

RESUMO

BACKGROUND: Parentage control is moving from short tandem repeats- to single nucleotide polymorphism (SNP) systems. For SNP-based parentage control in cattle, the ISAG-ICAR Committee proposes a set of 100/200 SNPs but quality criteria are lacking. Regarding German Holstein-Friesian cattle with only a limited number of evaluated individuals, the exclusion probability is not well-defined. We propose a statistical procedure for excluding single SNPs from parentage control, based on case-by-case evaluation of the GenCall score, to minimize parentage exclusion, based on miscalled genotypes. Exclusion power of the ISAG-ICAR SNPs used for the German Holstein-Friesian population was adjusted based on the results of more than 25,000 individuals. RESULTS: Experimental data were derived from routine genomic selection analyses of the German Holstein-Friesian population using the Illumina BovineSNP50 v2 BeadChip (20,000 individuals) or the EuroG10K variant (7000 individuals). Averages and standard deviations of GenCall scores for the 200 SNPs of the ISAG-ICAR recommended panel were calculated and used to calculate the downward Z-value. Based on minor allelic frequencies in the Holstein-Friesian population, one minus exclusion probability was equal to 1.4×10⁻¹° and 7.2×10⁻²6, with one and two parents, respectively. Two monomorphic SNPs from the 100-SNP ISAG-ICAR core-panel did not contribute. Simulation of 10,000 parentage control combinations, using the GenCall score data from both BeadChips, showed that with a Z-value greater than 3.66 only about 2.5% parentages were excluded, based on the ISAG-ICAR recommendations (core-panel: ≥ 90 SNPs for one, ≥ 85 SNPs for two parents). When applied to real data from 1750 single parentage assessments, the optimal threshold was determined to be Z = 5.0, with only 34 censored cases and reduction to four (0.2%) doubtful parentages. About 70 parentage exclusions due to weak genotype calls were avoided, whereas true exclusions (n = 34) were unaffected. CONCLUSIONS: Using SNPs for parentage evaluation provides a high exclusion power also for parent identification. SNPs with a low GenCall score show a high tendency towards intra-molecular secondary structures and substantially contribute to false exclusion of parentages. We propose a method that controls this error without excluding too many parent combinations from the evaluation.


Assuntos
Bovinos/genética , Genômica/estatística & dados numéricos , Genótipo , Polimorfismo de Nucleotídeo Único , Animais , Biometria , Cruzamento/estatística & dados numéricos , Bovinos/classificação , Pai , Frequência do Gene , Marcadores Genéticos/genética , Genômica/instrumentação , Genômica/métodos , Probabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA