Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(7): 1599-1612, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296860

RESUMO

Characterization at the subunit level enables detailed mass spectrometric characterization of posttranslational modifications (PTMs) of monoclonal antibodies (mAbs). The implemented reduction often leaves the intramolecular disulfide bridges intact. Here, we present a capillary electrophoretic (CE) method based on a neutral-coated capillary for the separation of immunoglobulin G-degrading enzyme of Streptococcus pyogenes (IdeS) digested and reduced mAb subunits followed by mass spectrometry (MS), MS/MS identification, and trapped ion mobility mass spectrometry (timsTOF). Our CE approach enables the separation of (i) different subunit moieties, (ii) various reduction states, and (iii) positional isomers of these partly reduced subunit moieties. The location of the remaining disulfide bridges can be determined by middle-down electron transfer higher energy collisional dissociation (EThcD) experiments. All these CE-separated variants show differences in ion mobility in the timsTOF measurements. Applying the presented CE-MS/MS method, reduction parameters such as the use of chaotropic salts were studied. For the investigated antibodies, urea improved the subunit reduction significantly, whereas guanidine hydrochloride (GuHCl) leads to multiple signals of the same subunit in the CE separation. The presented CE-MS method is a powerful tool for the disulfide-variant characterization of mAbs on the subunit level. It enables understanding disulfide bridge reduction processes in antibodies and potentially other proteins.


Assuntos
Dissulfetos , Espectrometria de Massas em Tandem , Dissulfetos/química , Eletroforese Capilar/métodos , Anticorpos Monoclonais/química , Processamento de Proteína Pós-Traducional
2.
Electrophoresis ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085142

RESUMO

Ion mobility-mass spectrometry (IM-MS) is an ever-evolving tool to separate ions in the gas phase according to electrophoretic mobility with subsequent mass determination. CE is rarely coupled to IM-MS, possibly due to similar separation mechanisms based on electrophoretic mobility. Here, we investigate the orthogonality of CE and ion mobility (IM) by analyzing a complex peptide mixture (tryptic digest of HeLa proteins) with trapped ion mobility mass spectrometry (TIMS-MS). Using the nanoCEasy interface, excellent sensitivity was achieved by identifying thousands of peptides and achieving a peak capacity of 7500 (CE: 203-323 in a 150 cm long capillary, IM: 27-31). Plotting CE versus mass and CE versus (inverse) mobility, a clear grouping in curved striped patterns is observed according to the charge-to-size and mass-to-charge ratios. The peptide charge in the acidic background electrolyte can be estimated from the number of basic amino acids, with a few exceptions where neighboring effects reduce the positive charge. A surprisingly high orthogonality of CE and IM is observed, which is obviously caused by solvation effects leading to different charges and sizes in the liquid phase compared to the gas phase. A high orthogonality of CE and ion mobility is expected to be observed for other peptide samples as well as other substance classes, making CE-IM-MS a promising tool for various applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA