Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Harmful Algae ; 127: 102481, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37544666

RESUMO

Cyanobacterial blooms are increasing in frequency and intensity globally, impacting lake ecosystem health and posing a risk to human and animal health due to the toxins they can produce. Cyanobacterial pigments preserved in lake sediments provide a useful means of understanding the changes that have led to cyanobacterial blooms in lakes. However, there is some uncertainty as to whether specific carotenoids are unique to certain genera or types of cyanobacteria. To fill this knowledge gap, we analyzed pigments in 34 cyanobacteria cultures and applied the findings to sediments from three New Zealand lakes. The cyanobacterial carotenoids canthaxanthin, echinenone and zeaxanthin were detected in all cultures, whereas myxoxanthophyll was only detected in ten cultures (Microcoleus, Planktothrix and the picocyanobacteria cultures; Synechococcaceae). The sum of the individual carotenoid concentrations provided the strongest relationship with cyanobacterial biomass (R2 = 0.58) and could be used in paleolimnology studies to evaluate general cyanobacterial abundance. Ratios of canthaxanthin, zeaxanthin and myxoxanthophyll relative to echinenone indicated that carotenoid ratios could be used to differentiate picocyanobacteria and bloom-forming cyanobacteria, to some degree. High zeaxanthin/echinenone ratios were measured in picocyanobacteria and low zeaxanthin/echinenone ratios were measured in bloom-forming cyanobacteria. The zeaxanthin/echinenone ratio was applied to sediment core samples where the cyanobacterial community was also evaluated by 16S rRNA gene metabarcoding, with the zeaxanthin/echinenone ratios showing similar patterns to those observed in the cultures. The preliminary assessment described here suggests that zeaxanthin/echinenone ratios could provide a valuable paleoecological proxy for evaluating historical shifts in cyanobacterial communities and warrants further exploration.


Assuntos
Cantaxantina , Cianobactérias , Animais , Humanos , Zeaxantinas , RNA Ribossômico 16S/genética , Ecossistema , Carotenoides , Cianobactérias/genética
2.
Front Microbiol ; 12: 757929, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867882

RESUMO

Picocyanobacteria (Pcy) are important yet understudied components of lake foodwebs. While phylogenetic studies of isolated strains reveal a high diversity of freshwater genotypes, little is known about abiotic drivers associated with Pcy in different lakes. Due to methodological limitations, most previous studies assess potential drivers using total cell abundances as a response, with often conflicting and inconsistent results. In the present study, we explored how picocyanobacterial communities respond to environmental change using a combination of epifluorescence microscopy and community data determined using 16S rRNA gene metabarcoding. Temporal shifts in picocyanobacterial abundance, diversity and community dynamics were assessed in relation to potential environmental drivers in five contrasting lakes over 1year. Cell abundances alone were not consistently related to environmental variables across lakes. However, the addition of metabarcoding data revealed diverse picocyanobacterial communities that differed significantly between lakes, driven by environmental variables related to trophic state. Within each lake, communities were temporally dynamic and certain amplicon sequence variants (ASVs) were strongly associated with specific environmental drivers. Rapid shifts in community structure and composition were often related to environmental changes, indicating that lacustrine Pcy can persist at high abundances through collective community adaptation. These results demonstrate that a combination of microscopy and metabarcoding enables an in-depth characterisation of picocyanobacterial communities and reveals strain-specific drivers. We recommend that future studies cease referring to picocyanobacterial as one functional group and take strain specific variability into consideration.

3.
FEMS Microbiol Ecol ; 97(7)2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34100943

RESUMO

Freshwater picocyanobacteria (Pcy) are important yet understudied components of lake ecosystems. Most previous studies have relied on cell abundances to assess Pcy dynamics in largely oligotrophic lakes, while little is known about spatial diversity and dynamics across different lake types. In the present study we assessed the horizontal-spatial abundance and community structure of Pcy in two contrasting (oligotrophic and hypertrophic) New Zealand lakes using epifluorescence microscopy and 16S rRNA metabarcoding. Pcy abundance and community composition differed significantly both between and within the oligotrophic and hypertrophic lakes. While spatial variability was observed in both study lakes, these differences were particularly pronounced in the oligotrophic, morphometrically complex Lake Wanaka where cell abundances were typically higher in bays than open-water sites and community structure differed significantly between sites. Community structuring appeared to be driven by localised environmental conditions, with different factors influencing each lake. These results suggest that single spot-samples are insufficient to gain an understanding of Pcy dynamics and consequently, phytoplankton dynamics in lakes.


Assuntos
DNA Ambiental , Lagos , Código de Barras de DNA Taxonômico , Ecossistema , Nova Zelândia , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA