Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 118(2): 388-404, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38150324

RESUMO

The intercellular space or apoplast constitutes the main interface in plant-pathogen interactions. Apoplastic subtilisin-like proteases-subtilases-may play an important role in defence and they have been identified as targets of pathogen-secreted effector proteins. Here, we characterise the role of the Solanaceae-specific P69 subtilase family in the interaction between tomato and the vascular bacterial wilt pathogen Ralstonia solanacearum. R. solanacearum infection post-translationally activated several tomato P69s. Among them, P69D was exclusively activated in tomato plants resistant to R. solanacearum. In vitro experiments showed that P69D activation by prodomain removal occurred in an autocatalytic and intramolecular reaction that does not rely on the residue upstream of the processing site. Importantly P69D-deficient tomato plants were more susceptible to bacterial wilt and transient expression of P69B, D and G in Nicotiana benthamiana limited proliferation of R. solanacearum. Our study demonstrates that P69s have conserved features but diverse functions in tomato and that P69D is involved in resistance to R. solanacearum but not to other vascular pathogens like Fusarium oxysporum.


Assuntos
Ralstonia solanacearum , Solanaceae , Solanum lycopersicum , Solanum lycopersicum/genética , Nicotiana/genética , Ralstonia solanacearum/fisiologia , Doenças das Plantas/microbiologia
2.
Proc Natl Acad Sci U S A ; 119(16): e2201195119, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35412898

RESUMO

Most peptide hormones and growth factors are matured from larger inactive precursor proteins by proteolytic processing and further posttranslational modification. Whether or how posttranslational modifications contribute to peptide bioactivity is still largely unknown. We address this question here for TWS1 (Twisted Seed 1), a peptide regulator of embryonic cuticle formation in Arabidopsis thaliana. Using synthetic peptides encompassing the N- and C-terminal processing sites and the recombinant TWS1 precursor as substrates, we show that the precursor is cleaved by the subtilase SBT1.8 at both the N and the C termini of TWS1. Recognition and correct processing at the N-terminal site depended on sulfation of an adjacent tyrosine residue. Arginine 302 of SBT1.8 was found to be required for sulfotyrosine binding and for accurate processing of the TWS1 precursor. The data reveal a critical role for posttranslational modification, here tyrosine sulfation of a plant peptide hormone precursor, in mediating processing specificity and peptide maturation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Hormônios Peptídicos , Processamento de Proteína Pós-Traducional , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo , Tirosina/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(22): e2201446119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35609199

RESUMO

The surface of pollen grains is reinforced by pollen wall components produced noncell autonomously by tapetum cells that surround developing pollen within the male floral organ, the anther. Here, we show that tapetum activity is regulated by the GASSHO (GSO) receptor-like kinase pathway, controlled by two sulfated peptides, CASPARIAN STRIP INTEGRITY FACTOR 3 (CIF3) and CIF4, the precursors of which are expressed in the tapetum itself. Coordination of tapetum activity with pollen grain development depends on the action of subtilases, including AtSBT5.4, which are produced stage specifically by developing pollen grains. Tapetum-derived CIF precursors are processed by subtilases, triggering GSO-dependent tapetum activation. We show that the GSO receptors act from the middle layer, a tissue surrounding the tapetum and developing pollen. Three concentrically organized cell types, therefore, cooperate to coordinate pollen wall deposition through a multilateral molecular dialogue.


Assuntos
Flores , Pólen , Regulação da Expressão Gênica de Plantas , Peptídeos/metabolismo , Pólen/metabolismo
4.
Plant Physiol ; 193(1): 809-820, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37254811

RESUMO

Posttranslationally modified peptides are now recognized as important regulators of plant stress responses. Here, we identified the small sulfated CLE-LIKE6 (CLEL6) peptide as a negative regulator of anthocyanin biosynthesis in etiolated and in light-stressed Arabidopsis (Arabidopsis thaliana) seedlings. CLEL6 function depends on proteolytic processing of the CLEL6 precursor by subtilisin-like serine proteinase 6.1 (SBT6.1) and on tyrosine sulfation by tyrosylprotein sulfotransferase (TPST). Loss-of-function mutants of either sbt6.1 or tpst showed significantly higher anthocyanin accumulation than the wild type upon light stress. The anthocyanin overaccumulation phenotype of sbt6.1 and tpst was suppressed by application of mature CLEL6. Overexpression and external application of CLEL6 inhibited the expression of anthocyanin biosynthesis genes in etiolated and light-stressed seedlings, confirming the role of CLEL6 as an inhibitor of anthocyanin biosynthesis. Small posttranslationally modified peptides are perceived by leucine-rich repeat receptor-like kinases. Using a quintuple mutant of ROOT MERISTEM GROWTH FACTOR 1 INSENSITIVE (RGI) receptors, we showed the essential function of the RGI receptor family in CLEL6 signaling. Our data indicate that overexpression or application of CLEL6 inhibits anthocyanin biosynthesis through RGI receptors. We propose that CLEL6 inhibits anthocyanin biosynthesis in etiolated seedlings, and that anthocyanin biosynthesis is derepressed when CLEL6 expression is downregulated upon light exposure. Hyperaccumulation of anthocyanins in light-stressed tpst and sbt6.1 mutant seedlings suggests that CLEL6, or related sulfopeptides, continues to act as negative regulators to limit pigment accumulation in the light.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Antocianinas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fenótipo , Plântula/genética , Plântula/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Plant Physiol ; 185(4): 1381-1394, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33793894

RESUMO

Parasitic plants that infect crops are devastating to agriculture throughout the world. These parasites develop a unique inducible organ called the haustorium that connects the vascular systems of the parasite and host to establish a flow of water and nutrients. Upon contact with the host, the haustorial epidermal cells at the interface with the host differentiate into specific cells called intrusive cells that grow endophytically toward the host vasculature. Following this, some of the intrusive cells re-differentiate to form a xylem bridge (XB) that connects the vasculatures of the parasite and host. Despite the prominent role of intrusive cells in host infection, the molecular mechanisms mediating parasitism in the intrusive cells remain poorly understood. In this study, we investigated differential gene expression in the intrusive cells of the facultative parasite Phtheirospermum japonicum in the family Orobanchaceae by RNA-sequencing of laser-microdissected haustoria. We then used promoter analyses to identify genes that are specifically induced in intrusive cells, and promoter fusions with genes encoding fluorescent proteins to develop intrusive cell-specific markers. Four of the identified intrusive cell-specific genes encode subtilisin-like serine proteases (SBTs), whose biological functions in parasitic plants are unknown. Expression of SBT inhibitors in intrusive cells inhibited both intrusive cell and XB development and reduced auxin response levels adjacent to the area of XB development. Therefore, we propose that subtilase activity plays an important role in haustorium development in P. japonicum.


Assuntos
Interações Hospedeiro-Parasita/fisiologia , Orobanchaceae/genética , Orobanchaceae/metabolismo , Orobanchaceae/parasitologia , Raízes de Plantas/metabolismo , Raízes de Plantas/parasitologia , Subtilisinas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Interações Hospedeiro-Parasita/genética , Subtilisinas/genética
6.
J Integr Plant Biol ; 64(11): 2047-2059, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36165344

RESUMO

Double fertilization is an innovative phenomenon in angiosperms, in which one sperm cell first fuses with the egg cell to produce the embryo, and then the other sperm fuses with the central cell to produce the endosperm. However, the molecular mechanism of the preferential fertilization of egg cells is poorly understood. In this study, we report that two egg cell-secreted aspartic proteases, ECS1 and ECS2, play an important role in promoting preferential fertilization of egg cells in Arabidopsis. We show that simultaneous loss of ECS1 and ECS2 function resulted in an approximately 20% reduction in fertility, which can be complemented by the full-length ECS1/2 but not by corresponding active site mutants or by secretion-defective versions of ECS1/2. Detailed phenotypic analysis revealed that the egg cell-sperm cell attachment was compromised in ecs1 ecs2 siliques. Limited pollination assays with cyclin-dependent kinase a1 (cdka;1) pollen showed that preferential egg cell fertilization was impaired in the ecs1 ecs2 mutant. Taken together, these results demonstrate that egg cells secret two aspartic proteases, ECS1 and ECS2, to facilitate the attachment of sperm cells to egg cells so that preferential fertilization of egg cells is achieved. This study reveals the molecular mechanism of preferential fertilization in Arabidopsis thaliana.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Peptídeo Hidrolases , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fertilização/genética , Células Germinativas , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Mutação
7.
New Phytol ; 232(4): 1582-1590, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34254310

RESUMO

The hemiparasitic plant Phtheirospermum japonicum (Phtheirospermum) is a nutritional specialist that supplements its nutrient requirements by parasitizing other plants through haustoria. During parasitism, the Phtheirospermum haustorium transfers hypertrophy-inducing cytokinins (CKs) to the infected host root. The CK biosynthesis genes required for haustorium-derived CKs and the induction of hypertrophy are still unknown. We searched for haustorium-expressed isopentenyltransferases (IPTs) that catalyze the first step of CK biosynthesis, confirmed the specific expression by in vivo imaging of a promoter-reporter, and further analyzed the subcellular localization, the enzymatic function and contribution to inducing hypertrophy by studying CRISPR-Cas9-induced Phtheirospermum mutants. PjIPT1a was expressed in intrusive cells of the haustorium close to the host vasculature. PjIPT1a and its closest homolog PjIPT1b located to the cytosol and showed IPT activity in vitro with differences in substrate specificity. Mutating PjIPT1a abolished parasite-induced CK responses in the host. A homolog of PjIPT1a also was identified in the related weed Striga hermonthica. With PjIPT1a, we identified the IPT enzyme that induces CK responses in Phtheirospermum japonicum-infected Arabidopsis roots. We propose that PjIPT1a exemplifies how parasitism-related functions evolve through gene duplications and neofunctionalization.


Assuntos
Arabidopsis , Orobanchaceae , Alquil e Aril Transferases , Arabidopsis/genética , Citocininas , Regulação da Expressão Gênica de Plantas , Raízes de Plantas
8.
Plant Physiol ; 184(3): 1573-1584, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32907884

RESUMO

Small posttranslationally modified signaling peptides are proteolytically derived from larger precursor proteins and subject to several additional steps of modification, including Pro hydroxylation, Hyp glycosylation, and/or Tyr sulfation. The processing proteases and the relevance of posttranslational modifications for peptide biogenesis and activity are largely unknown. In this study these questions were addressed for the Clavata3/Endosperm Surrounding Region (CLE) peptide CLE40, a peptide regulator of stem cell differentiation in the Arabidopsis (Arabidopsis thaliana) root meristem. We identify three subtilases (SBT1.4, SBT1.7, and SBT4.13) that cleave the CLE40 precursor redundantly at two sites. C-terminal processing releases the mature peptide from its precursor and is thus required for signal biogenesis. SBT-mediated cleavage at a second site within the mature peptide attenuates the signal. The second cleavage is prevented by Pro hydroxylation, resulting in the formation of mature and bioactive CLE40 in planta. Our data reveal a role for posttranslational modification by Pro hydroxylation in the regulation of CLE40 formation and activity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Diferenciação Celular/genética , Meristema/metabolismo , Raízes de Plantas/metabolismo , Prolina/metabolismo , Processamento de Proteína Pós-Traducional/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hidroxilação , Meristema/genética , Prolina/genética
9.
J Exp Bot ; 72(9): 3427-3440, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33471900

RESUMO

Increasing drought stress poses a severe threat to agricultural productivity. Plants, however, have evolved numerous mechanisms to cope with such environmental stress. Here we report that the stress-induced production of a peptide signal contributes to stress tolerance. The expression of phytosulfokine (PSK) peptide precursor genes, and transcripts of three subtilisin-like serine proteases, SBT1.4, SBT3.7, and SBT3.8, were found to be up-regulated in response to osmotic stress. Stress symptoms were more pronounced in sbt3.8 loss-of-function mutants and could be alleviated by PSK treatment. Osmotic stress tolerance was improved in plants overexpressing the PSK1 precursor (proPSK1) or SBT3.8, resulting in higher fresh weight and improved lateral root development in transgenic plants compared with wild-type plants. We further showed that SBT3.8 is involved in the biogenesis of the bioactive PSK peptide. ProPSK1 was cleaved by SBT3.8 at the C-terminus of the PSK pentapeptide. Processing by SBT3.8 depended on the aspartic acid residue directly following the cleavage site. ProPSK1 processing was impaired in the sbt3.8 mutant. The data suggest that increased expression of proPSK1 in response to osmotic stress followed by the post-translational processing of proPSK1 by SBT3.8 leads to the production of PSK as a peptide signal for stress mitigation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Secas , Serina Proteases/metabolismo , Estresse Fisiológico , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Serina Proteases/genética , Transdução de Sinais
10.
Mol Cell Proteomics ; 18(8): 1526-1542, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31138643

RESUMO

Systemin is a small peptide with important functions in plant wound response signaling. Although the transcriptional responses of systemin action are well described, the signaling cascades involved in systemin perception and signal transduction at the protein level are poorly understood. Here we used a tomato cell suspension culture system to profile phosphoproteomic responses induced by systemin and its inactive Thr17Ala analog, allowing us to reconstruct a systemin-specific kinase/phosphatase signaling network. Our time-course analysis revealed early phosphorylation events at the plasma membrane, such as dephosphorylation of H+-ATPase, rapid phosphorylation of NADPH-oxidase and Ca2+-ATPase. Later responses involved transient phosphorylation of small GTPases, vesicle trafficking proteins and transcription factors. Based on a correlation analysis of systemin-induced phosphorylation profiles, we predicted substrate candidates for 44 early systemin-responsive kinases, which includes receptor kinases and downstream kinases such as MAP kinases, as well as nine phosphatases. We propose a regulatory module in which H+-ATPase LHA1 is rapidly de-phosphorylated at its C-terminal regulatory residue T955 by phosphatase PLL5, resulting in the alkalization of the growth medium within 2 mins of systemin treatment. We found the MAP kinase MPK2 to have increased phosphorylation level at its activating TEY-motif at 15 min post-treatment. The predicted interaction of MPK2 with LHA1 was confirmed by in vitro kinase assays, suggesting that the H+-ATPase LHA1 is re-activated by MPK2 later in the systemin response. Our data set provides a resource of proteomic events involved in systemin signaling that will be valuable for further in-depth functional studies in elucidation of systemin signaling cascades.


Assuntos
Peptídeos/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo , Solanum lycopersicum/metabolismo , Fosforilação , Proteoma , Transdução de Sinais
11.
Nat Chem Biol ; 14(2): 171-178, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29291349

RESUMO

Biosynthesis of the phytohormone jasmonoyl-isoleucine (JA-Ile) requires reduction of the JA precursor 12-oxo-phytodienoic acid (OPDA) by OPDA reductase 3 (OPR3). Previous analyses of the opr3-1 Arabidopsis mutant suggested an OPDA signaling role independent of JA-Ile and its receptor COI1; however, this hypothesis has been challenged because opr3-1 is a conditional allele not completely impaired in JA-Ile biosynthesis. To clarify the role of OPR3 and OPDA in JA-independent defenses, we isolated and characterized a loss-of-function opr3-3 allele. Strikingly, opr3-3 plants remained resistant to necrotrophic pathogens and insect feeding, and activated COI1-dependent JA-mediated gene expression. Analysis of OPDA derivatives identified 4,5-didehydro-JA in wounded wild-type and opr3-3 plants. OPR2 was found to reduce 4,5-didehydro-JA to JA, explaining the accumulation of JA-Ile and activation of JA-Ile-responses in opr3-3 mutants. Our results demonstrate that in the absence of OPR3, OPDA enters the ß-oxidation pathway to produce 4,5-ddh-JA as a direct precursor of JA and JA-Ile, thus identifying an OPR3-independent pathway for JA biosynthesis.


Assuntos
Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Resistência à Doença , Isoleucina/análogos & derivados , Oxilipinas/metabolismo , Doenças das Plantas/prevenção & controle , Alelos , Alternaria , Animais , Proteínas de Arabidopsis/metabolismo , Bioensaio , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Homozigoto , Insetos , Isoleucina/metabolismo , Mutação , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais
12.
J Biol Chem ; 292(15): 6389-6401, 2017 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-28223360

RESUMO

The propeptides of subtilisin-like serine proteinases (subtilases, SBTs) serve dual functions as intramolecular chaperones that are required for enzyme folding and as inhibitors of the mature proteases. SBT propeptides are homologous to the I9 family of protease inhibitors that have only been described in fungi. Here we report the identification and characterization of subtilisin propeptide-like inhibitor 1 (SPI-1) from Arabidopsis thaliana Sequence similarity and the shared ß-α-ß-ß-α-ß core structure identified SPI-1 as a member of the I9 inhibitor family and as the first independent I9 inhibitor in higher eukaryotes. SPI-1 was characterized as a high-affinity, tight-binding inhibitor of Arabidopsis subtilase SBT4.13 with Kd and Ki values in the picomolar range. SPI-1 acted as a stable inhibitor of SBT4.13 over the physiologically relevant range of pH, and its inhibitory profile included many other SBTs from plants but not bovine chymotrypsin or bacterial subtilisin A. Upon binding to SBT4.13, the C-terminal extension of SPI-1 was proteolytically cleaved. The last four amino acids at the newly formed C terminus of SPI-1 matched both the cleavage specificity of SBT4.13 and the consensus sequence of Arabidopsis SBTs at the junction of the propeptide with the catalytic domain. The data suggest that the C terminus of SPI-1 acts as a competitive inhibitor of target proteases as it remains bound to the active site in a product-like manner. SPI-1 thus resembles SBT propeptides with respect to its mode of protease inhibition. However, in contrast to SBT propeptides, SPI-1 could not substitute as a folding assistant for SBT4.13.


Assuntos
Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/química , Arabidopsis/química , Inibidores de Serina Proteinase/química , Subtilisinas/antagonistas & inibidores , Subtilisinas/química , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Bovinos , Estrutura Secundária de Proteína , Inibidores de Serina Proteinase/metabolismo , Subtilisinas/metabolismo
13.
New Phytol ; 218(3): 901-915, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28467631

RESUMO

Contents Summary 901 I. Introduction 901 II. Biochemistry and structure of plant SBTs 902 III. Phylogeny of plant SBTs and family organization 903 IV. Physiological roles of plant SBTs 905 V. Conclusions and outlook 911 Acknowledgements 912 References 912 SUMMARY: Subtilases (SBTs) are serine peptidases that are found in all three domains of life. As compared with homologs in other Eucarya, plant SBTs are more closely related to archaeal and bacterial SBTs, with which they share many biochemical and structural features. However, in the course of evolution, functional diversification led to the acquisition of novel, plant-specific functions, resulting in the present-day complexity of the plant SBT family. SBTs are much more numerous in plants than in any other organism, and include enzymes involved in general proteolysis as well as highly specific processing proteases. Most SBTs are targeted to the cell wall, where they contribute to the control of growth and development by regulating the properties of the cell wall and the activity of extracellular signaling molecules. Plant SBTs affect all stages of the life cycle as they contribute to embryogenesis, seed development and germination, cuticle formation and epidermal patterning, vascular development, programmed cell death, organ abscission, senescence, and plant responses to their biotic and abiotic environments. In this article we provide a comprehensive picture of SBT structure and function in plants.


Assuntos
Plantas/enzimologia , Subtilisinas/química , Subtilisinas/metabolismo , Morte Celular , Filogenia , Fenômenos Fisiológicos Vegetais
14.
New Phytol ; 218(3): 1167-1178, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28407256

RESUMO

Peptide hormones are implicated in many important aspects of plant life and are usually synthesized as precursor proteins. In contrast to animals, data for plant peptide hormone maturation are scarce and the specificity of processing enzyme(s) is largely unknown. Here we tested a hypothesis that processing of prosystemin, a precursor of tomato (Solanum lycopersicum) wound hormone systemin, is performed by phytaspases, aspartate-specific proteases of the subtilase family. Following the purification of phytaspase from tomato leaves, two tomato phytaspase genes were identified, the cDNAs were cloned and the recombinant enzymes were obtained after transient expression in Nicotiana benthamiana. The newly identified tomato phytaspases hydrolyzed prosystemin at two aspartate residues flanking the systemin sequence. Site-directed mutagenesis of the phytaspase cleavage sites in prosystemin abrogated not only the phytaspase-mediated processing of the prohormone in vitro, but also the ability of prosystemin to trigger the systemic wound response in vivo. The data show that the prohormone prosystemin requires processing for signal biogenesis and biological activity. The identification of phytaspases as the proteases involved in prosystemin maturation provides insight into the mechanisms of wound signaling in tomato. Our data also suggest a novel role for cell death-related proteases in mediating defense signaling in plants.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Peptídeos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Solanum lycopersicum/metabolismo , Hidrólise , Transdução de Sinais
15.
J Biol Chem ; 291(37): 19449-61, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27451395

RESUMO

Subtilisin-like serine proteases (SBTs) are extracellular proteases that depend on their propeptides for zymogen maturation and activation. The function of propeptides in plant SBTs is poorly understood and was analyzed here for the propeptide of tomato subtilase 3 (SBT3PP). SBT3PP was found to be required as an intramolecular chaperone for zymogen maturation and secretion of SBT3 in vivo Secretion was impaired in a propeptide-deletion mutant but could be restored by co-expression of the propeptide in trans SBT3 was inhibited by SBT3PP with a Kd of 74 nm for the enzyme-inhibitor complex. With a melting point of 87 °C, thermal stability of the complex was substantially increased as compared with the free protease suggesting that propeptide binding stabilizes the structure of SBT3. Even closely related propeptides from other plant SBTs could not substitute for SBT3PP as a folding assistant or autoinhibitor, revealing high specificity for the SBT3-SBT3PP interaction. Separation of the chaperone and inhibitor functions of SBT3PP in a domain-swap experiment indicated that they are mediated by different regions of the propeptide and, hence, different modes of interaction with SBT3. Release of active SBT3 from the autoinhibited complex relied on a pH-dependent cleavage of the propeptide at Asn-38 and Asp-54. The remarkable stability of the autoinhibited complex and pH dependence of the secondary cleavage provide means for stringent control of SBT3 activity, to ensure that the active enzyme is not released before it reaches the acidic environment of the trans-Golgi network or its final destination in the cell wall.


Assuntos
Parede Celular/enzimologia , Precursores Enzimáticos/metabolismo , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Solanum lycopersicum/enzimologia , Subtilisinas/metabolismo , Parede Celular/genética , Ativação Enzimática , Precursores Enzimáticos/genética , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Solanum lycopersicum/genética , Chaperonas Moleculares/genética , Células Vegetais/enzimologia , Subtilisinas/genética , Rede trans-Golgi/enzimologia , Rede trans-Golgi/genética
16.
Plant Physiol ; 172(4): 2165-2175, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27756822

RESUMO

Dirigent proteins impart stereoselectivity to phenoxy radical coupling reactions in plants and, thus, play an essential role in the biosynthesis of biologically active natural products. This includes the regioselective and enantioselective coupling and subsequent cyclization of two coniferyl alcohol radicals to pinoresinol as the committed step of lignan biosynthesis. The reaction is controlled by dirigent proteins, which, depending on the species and protein, direct the reaction to either (+)- or (-)-pinoresinol. We present the crystal structure of the (-)-pinoresinol forming DIRIGENT PROTEIN6 (AtDIR6) from Arabidopsis (Arabidopsis thaliana) with data to 1.4 Å resolution. The structure shows AtDIR6 as an eight-stranded antiparallel ß-barrel that forms a trimer with spatially well-separated cavities for substrate binding. The binding cavities are two lobed, exhibiting two opposing pockets, each lined with a set of hydrophilic and potentially catalytic residues, including essential aspartic acids. These residues are conserved between (+) and (-)-pinoresinol-forming DIRs and required for activity. The structure supports a model in which two substrate radicals bind to each of the DIR monomers. With the aromatic rings fixed in the two pockets, the propionyl side chains face each other for radical-radical coupling, and stereoselectivity is determined by the exact positioning of the side chains. Extensive mutational analysis supports a previously unrecognized function for DIRs in catalyzing the cyclization of the bis-quinone methide reaction intermediate to yield (+)- or (-)-pinoresinol.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Sítios de Ligação , Biocatálise , Cristalografia por Raios X , Ciclização , Análise Mutacional de DNA , Modelos Moleculares , Fenóis/química , Fenóis/metabolismo , Estereoisomerismo
17.
Plant Physiol ; 171(2): 1456-69, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27208293

RESUMO

In contrast to mammalian matrix metalloproteinases (MMPs) that play important roles in the remodeling of the extracellular matrix in animals, the proteases responsible for dynamic modifications of the plant cell wall are largely unknown. A possible involvement of MMPs was addressed by cloning and functional characterization of Sl2-MMP and Sl3-MMP from tomato (Solanum lycopersicum). The two tomato MMPs were found to resemble mammalian homologs with respect to gelatinolytic activity, substrate preference for hydrophobic amino acids on both sides of the scissile bond, and catalytic properties. In transgenic tomato seedlings silenced for Sl2/3-MMP expression, necrotic lesions were observed at the base of the hypocotyl. Cell death initiated in the epidermis and proceeded to include outer cortical cell layers. In later developmental stages, necrosis spread, covering the entire stem and extending into the leaves of MMP-silenced plants. The subtilisin-like protease P69B was identified as a substrate of Sl2- and Sl3-MMP. P69B was shown to colocalize with Sl-MMPs in the apoplast of the tomato hypocotyl, it exhibited increased stability in transgenic plants silenced for Sl-MMP activity, and it was cleaved and inactivated by Sl-MMPs in vitro. The induction of cell death in Sl2/3-MMP-silenced plants depended on P69B, indicating that Sl2- and Sl3-MMP act upstream of P69B in an extracellular proteolytic cascade that contributes to the regulation of cell death in tomato.


Assuntos
Metaloproteinases da Matriz/metabolismo , Solanum lycopersicum/citologia , Solanum lycopersicum/enzimologia , Biocatálise , Morte Celular , Clonagem Molecular , Eletroforese em Gel Bidimensional , Ensaio de Desvio de Mobilidade Eletroforética , Hipocótilo/metabolismo , Fenótipo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Transporte Proteico , Proteoma/metabolismo , Proteômica , Interferência de RNA , Frações Subcelulares/enzimologia , Especificidade por Substrato
18.
Appl Microbiol Biotechnol ; 101(5): 2021-2032, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27858135

RESUMO

We established an efficient fed-batch fermentation process for two novel dirigent proteins from cotton plants, GbDIR2 from Gossypium barbadense and GhDIR3 from G. hirsutum, using the engineered Pichia pastoris GlycoSwitch® SuperMan5 strain to prevent hyperglycosylation. The two (His)6-tagged proteins were purified by metal-chelate affinity chromatography and obtained in quantities of 12 and 15 mg L-1 of culture volume, respectively. Glycosylation sites were identified for the native and for the enzymatically deglycosylated proteins by mass spectrometry, confirming five to six of the seven predicted glycosylation sites in the NxS/T sequence context. The predominant glycan structure was Man5GlcNAc2 with, however, a significant contribution of Man4-10GlcNAc2. Both dirigent proteins (DIRs) mediated the formation of (+)-gossypol by atropselective coupling of hemigossypol radicals. Similar to previously characterized DIRs, GbDIR2 and GhDIR3 lacked oxidizing activity and depended on an oxidizing system (laccase/O2) for the generation of substrate radicals. In contrast to DIRs involved in the biosynthesis of lignans, glycosylation was not essential for function. Quantitative enzymatic deglycosylation yielded active GbDIR2 and GhDIR3 in excellent purity. The described fermentation process in combination with enzymatic deglycosylation will pave the way for mechanistic and structural studies and, eventually, the application of cotton DIRs in a biomimetic approach towards atropselective biaryl synthesis.


Assuntos
Gossypium/metabolismo , Gossipol/metabolismo , Pichia/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/metabolismo , Clonagem Molecular , Glicosilação , Gossypium/genética , Pichia/genética , Proteínas de Plantas/genética , Proteínas Recombinantes/genética
19.
J Exp Bot ; 67(14): 4325-38, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27259555

RESUMO

Subtilisin-like proteases (SBTs) constitute a large family of extracellular plant proteases, the function of which is still largely unknown. In tomato plants, the expression of SBT3 was found to be induced in response to wounding and insect attack in injured leaves but not in healthy systemic tissues. The time course of SBT3 induction resembled that of proteinase inhibitor II and other late wound response genes suggesting a role for SBT3 in herbivore defense. Consistent with such a role, larvae of the specialist herbivore Manduca sexta performed better on transgenic plants silenced for SBT3 expression (SBT3-SI). Supporting a contribution of SBT3 to systemic wound signaling, systemic induction of late wound response genes was attenuated in SBT3-SI plants. The partial loss of insect resistance may thus be explained by a reduction in systemic defense gene expression. Alternatively, SBT3 may play a post-ingestive role in plant defense. Similar to other anti-nutritive proteins, SBT3 was found to be stable and active in the insect's digestive system, where it may act on unidentified proteins of insect or plant origin. Finally, a reduction in the level of pectin methylesterification that was observed in transgenic plants with altered levels of SBT3 expression suggested an involvement of SBT3 in the regulation of pectin methylesterases (PMEs). While such a role has been described in other systems, PME activity and the degree of pectin methylesterification did not correlate with the level of insect resistance in SBT3-SI and SBT3 overexpressing plants and are thus unrelated to the observed resistance phenotype.


Assuntos
Proteínas de Plantas/fisiologia , Solanum lycopersicum/fisiologia , Subtilisinas/fisiologia , Animais , Herbivoria , Solanum lycopersicum/enzimologia , Manduca , Peptídeo Hidrolases/fisiologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Plant Physiol ; 166(1): 396-410, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25073705

RESUMO

The jasmonate family of growth regulators includes the isoleucine (Ile) conjugate of jasmonic acid (JA-Ile) and its biosynthetic precursor 12-oxophytodienoic acid (OPDA) as signaling molecules. To assess the relative contribution of JA/JA-Ile and OPDA to insect resistance in tomato (Solanum lycopersicum), we silenced the expression of OPDA reductase3 (OPR3) by RNA interference (RNAi). Consistent with a block in the biosynthetic pathway downstream of OPDA, OPR3-RNAi plants contained wild-type levels of OPDA but failed to accumulate JA or JA-Ile after wounding. JA/JA-Ile deficiency in OPR3-RNAi plants resulted in reduced trichome formation and impaired monoterpene and sesquiterpene production. The loss of these JA/JA-Ile -dependent defense traits rendered them more attractive to the specialist herbivore Manduca sexta with respect to feeding and oviposition. Oviposition preference resulted from reduced levels of repellant monoterpenes and sesquiterpenes. Feeding preference, on the other hand, was caused by increased production of cis-3-hexenal acting as a feeding stimulant for M. sexta larvae in OPR3-RNAi plants. Despite impaired constitutive defenses and increased palatability of OPR3-RNAi leaves, larval development was indistinguishable on OPR3-RNAi and wild-type plants, and was much delayed compared with development on the jasmonic acid-insensitive1 (jai1) mutant. Apparently, signaling through JAI1, the tomato ortholog of the ubiquitin ligase CORONATINE INSENSITIVE1 in Arabidopsis (Arabidopsis thaliana), is required for defense, whereas the conversion of OPDA to JA/JA-Ile is not. Comparing the signaling activities of OPDA and JA/JA-Ile, we found that OPDA can substitute for JA/JA-Ile in the local induction of defense gene expression, but the production of JA/JA-Ile is required for a systemic response.


Assuntos
Ciclopentanos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Herbivoria/imunologia , Oxilipinas/metabolismo , Solanum lycopersicum/fisiologia , Tricomas/crescimento & desenvolvimento , Aldeídos/metabolismo , Animais , Preferências Alimentares , Regulação da Expressão Gênica de Plantas , Larva/crescimento & desenvolvimento , Manduca/crescimento & desenvolvimento , Oviposição , Interferência de RNA , Metabolismo Secundário , Terpenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA