Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Virol ; 98(4): e0201523, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38451083

RESUMO

Herpes simplex virus 1 (HSV-1) transcription is restricted in latently infected neurons and the genomes are in mostly silenced chromatin, whereas all viral genes are transcribed in lytically infected cells, in which the genomes are dynamically chromatinized. Epigenetic regulation modulates HSV-1 transcription during lytic, latent, and reactivating infections but the precise mechanisms are not fully defined. Nucleosomes are dynamic: they slide, breathe, assemble, and disassemble. We and others have proposed that the most dynamic HSV-1 chromatin is transcriptionally competent, whereas the least dynamic is silenced. However, the mechanisms yielding the unusually dynamic viral chromatin remain unknown. Histone variants affect nucleosome dynamics. The dynamics of H2A, H2A.X, and macroH2A were enhanced in infected cells, whereas those of H2A.B were uniquely decreased. We constructed stably transduced cells expressing tagged histone H2A, H2A.B, macroH2A, or H2B, which assembles the H2A/H2B nucleosome dimers with all H2A variants. All H2A variants, as well as ectopic and endogenous H2B were assembled into HSV-1 chromatin evenly throughout the genome but canonical H2A was relatively depleted whereas H2A.B was enriched, particularly in the most dynamic viral chromatin. When viral transcription and DNA replication were restricted, H2A.B became as depleted from the viral chromatin through the entire genome as H2A. We propose that lytic HSV-1 nucleosomes are enriched in the dynamic variant H2A.B/H2B dimers to promote HSV-1 chromatin dynamics and transcriptional competency and conclude that the dynamics of HSV-1 chromatin are determined in part by the H2A variants. IMPORTANCE: Herpes simplex virus 1 (HSV-1) transcription is epigenetically regulated during latent and lytic infections, and epigenetic inhibitors have been proposed as potential antiviral drugs to modulate latency and reactivation. However, the detailed epigenetic mechanisms of regulation of HSV-1 transcription have not been fully characterized and may differ from those regulating cellular transcription. Whereas lytic HSV-1 chromatin is unusually dynamic, latent silenced HSV-1 chromatin is not. The mechanisms resulting in the unique dynamics of the lytic chromatin remain unknown. Here we identify the enrichment of the highly dynamic histone 2A variant H2A in the most dynamic viral chromatin, which provides a mechanistic understanding of its unique dynamics. Future work to identify the mechanisms of enrichment in H2A.B on the viral chromatin may identify novel druggable epigenetic regulators that modulate HSV-1 latency and reactivation.


Assuntos
Cromatina , Epigênese Genética , Regulação Viral da Expressão Gênica , Herpesvirus Humano 1 , Histonas , Transcrição Viral , Replicação Viral , Cromatina/genética , Cromatina/metabolismo , Inativação Gênica , Variação Genética , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/crescimento & desenvolvimento , Herpesvirus Humano 1/fisiologia , Histonas/genética , Histonas/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , Ativação Viral , Latência Viral , Humanos , Animais , Células Vero , Células HEK293
2.
J Virol ; 96(9): e0033322, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35412344

RESUMO

Vertical transmission of Zika virus (ZIKV) leads with high frequency to congenital ZIKV syndrome (CZS), whose worst outcome is microcephaly. However, the mechanisms of congenital ZIKV neurodevelopmental pathologies, including direct cytotoxicity to neural progenitor cells (NPC), placental insufficiency, and immune responses, remain incompletely understood. At the cellular level, microcephaly typically results from death or insufficient proliferation of NPC or cortical neurons. NPC replicate fast, requiring efficient DNA damage responses to ensure genome stability. Like congenital ZIKV infection, mutations in the polynucleotide 5'-kinase 3'-phosphatase (PNKP) gene, which encodes a critical DNA damage repair enzyme, result in recessive syndromes often characterized by congenital microcephaly with seizures (MCSZ). We thus tested whether there were any links between ZIKV and PNKP. Here, we show that two PNKP phosphatase inhibitors or PNKP knockout inhibited ZIKV replication. PNKP relocalized from the nucleus to the cytoplasm in infected cells, colocalizing with the marker of ZIKV replication factories (RF) NS1 and resulting in functional nuclear PNKP depletion. Although infected NPC accumulated DNA damage, they failed to activate the DNA damage checkpoint kinases Chk1 and Chk2. ZIKV also induced activation of cytoplasmic CycA/CDK1 complexes, which trigger unscheduled mitotic entry. Inhibition of CDK1 activity inhibited ZIKV replication and the formation of RF, supporting a role of cytoplasmic CycA/CDK1 in RF morphogenesis. In brief, ZIKV infection induces mitotic catastrophe resulting from unscheduled mitotic entry in the presence of DNA damage. PNKP and CycA/CDK1 are thus host factors participating in ZIKV replication in NPC, and pathogenesis to neural progenitor cells. IMPORTANCE The 2015-2017 Zika virus (ZIKV) outbreak in Brazil and subsequent international epidemic revealed the strong association between ZIKV infection and congenital malformations, mostly neurodevelopmental defects up to microcephaly. The scale and global expansion of the epidemic, the new ZIKV outbreaks (Kerala state, India, 2021), and the potential burden of future ones pose a serious ongoing risk. However, the cellular and molecular mechanisms resulting in microcephaly remain incompletely understood. Here, we show that ZIKV infection of neuronal progenitor cells results in cytoplasmic sequestration of an essential DNA repair protein itself associated with microcephaly, with the consequent accumulation of DNA damage, together with an unscheduled activation of cytoplasmic CDK1/Cyclin A complexes in the presence of DNA damage. These alterations result in mitotic catastrophe of neuronal progenitors, which would lead to a depletion of cortical neurons during development.


Assuntos
Dano ao DNA , Enzimas Reparadoras do DNA , Mitose , Células-Tronco Neurais , Fosfotransferases (Aceptor do Grupo Álcool) , Infecção por Zika virus , Enzimas Reparadoras do DNA/genética , Humanos , Microcefalia/virologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/virologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Zika virus , Infecção por Zika virus/patologia
3.
PLoS Pathog ; 15(11): e1008076, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31725813

RESUMO

During latent infections with herpes simplex virus 1 (HSV-1), viral transcription is restricted and the genomes are mostly maintained in silenced chromatin, whereas in lytically infected cells all viral genes are transcribed and the genomes are dynamically chromatinized. Histones in the viral chromatin bear markers of silenced chromatin at early times in lytic infection or of active transcription at later times. The virion protein VP16 activates transcription of the immediate-early (IE) genes by recruiting transcription activators and chromatin remodelers to their promoters. Two IE proteins, ICP0 and ICP4 which modulate chromatin epigenetics, then activate transcription of early and late genes. Although chromatin is involved in the mechanism of activation of HSV- transcription, its precise role is not entirely understood. In the cellular genome, chromatin dynamics often modulate transcription competence whereas promoter-specific transcription factors determine transcription activity. Here, biophysical fractionation of serially digested HSV-1 chromatin followed by short-read deep sequencing indicates that nuclear HSV-1 DNA has different biophysical properties than protein-free or encapsidated HSV-1 DNA. The entire HSV-1 genomes in infected cells were equally accessible. The accessibility of transcribed or non-transcribed genes under any given condition did not differ, and each gene was entirely sampled in both the most and least accessible chromatin. However, HSV-1 genomes fractionated differently under conditions of generalized or restricted transcription. Approximately 1/3 of the HSV-1 DNA including fully sampled genes resolved to the most accessible chromatin when HSV-1 transcription was active, but such enrichment was reduced to only 3% under conditions of restricted HSV-1 transcription. Short sequences of restricted accessibility separated genes with different transcription levels. Chromatin dynamics thus provide a first level of regulation on HSV-1 transcription, dictating the transcriptional competency of the genomes during lytic infections, whereas the transcription of individual genes is then most likely activated by specific transcription factors. Moreover, genes transcribed to different levels are separated by short sequences with limited accessibility.


Assuntos
Cromatina/metabolismo , Regulação Viral da Expressão Gênica , Genes Virais , Genoma Viral , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Replicação Viral , Animais , Chlorocebus aethiops , Cromatina/genética , Herpes Simples/genética , Humanos , Células Vero
4.
PLoS Pathog ; 12(8): e1005842, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27575707

RESUMO

Although ICP4 is the only essential transcription activator of herpes simplex virus 1 (HSV-1), its mechanisms of action are still only partially understood. We and others propose a model in which HSV-1 genomes are chromatinized as a cellular defense to inhibit HSV-1 transcription. To counteract silencing, HSV-1 would have evolved proteins that prevent or destabilize chromatinization to activate transcription. These proteins should act as HSV-1 transcription activators. We have shown that HSV-1 genomes are organized in highly dynamic nucleosomes and that histone dynamics increase in cells infected with wild type HSV-1. We now show that whereas HSV-1 mutants encoding no functional ICP0 or VP16 partially enhanced histone dynamics, mutants encoding no functional ICP4 did so only minimally. Transient expression of ICP4 was sufficient to enhance histone dynamics in the absence of other HSV-1 proteins or HSV-1 DNA. The dynamics of H3.1 were increased in cells expressing ICP4 to a greater extent than those of H3.3. The dynamics of H2B were increased in cells expressing ICP4, whereas those of canonical H2A were not. ICP4 preferentially targets silencing H3.1 and may also target the silencing H2A variants. In infected cells, histone dynamics were increased in the viral replication compartments, where ICP4 localizes. These results suggest a mechanism whereby ICP4 activates transcription by disrupting, or preventing the formation of, stable silencing nucleosomes on HSV-1 genomes.


Assuntos
Cromatina/metabolismo , Regulação Viral da Expressão Gênica/genética , Herpes Simples/virologia , Proteínas Imediatamente Precoces/metabolismo , Replicação Viral/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Imunofluorescência , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 1/patogenicidade , Histonas/metabolismo , Humanos , Transcrição Gênica , Transfecção , Células Vero
5.
Hepatology ; 63(1): 49-62, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26248546

RESUMO

UNLABELLED: To explore mechanisms of hepatitis C viral (HCV) replication we screened a compound library including licensed drugs. Flunarizine, a diphenylmethylpiperazine used to treat migraine, inhibited HCV cell entry in vitro and in vivo in a genotype-dependent fashion. Analysis of mosaic viruses between susceptible and resistant strains revealed that E1 and E2 glycoproteins confer susceptibility to flunarizine. Time of addition experiments and single particle tracking of HCV demonstrated that flunarizine specifically prevents membrane fusion. Related phenothiazines and pimozide also inhibited HCV infection and preferentially targeted HCV genotype 2 viruses. However, phenothiazines and pimozide exhibited improved genotype coverage including the difficult to treat genotype 3. Flunarizine-resistant HCV carried mutations within the alleged fusion peptide and displayed cross-resistance to these compounds, indicating that these drugs have a common mode of action. CONCLUSION: These observations reveal novel details about HCV membrane fusion; moreover, flunarizine and related compounds represent first-in-class HCV fusion inhibitors that merit consideration for repurposing as a cost-effective component of HCV combination therapies.


Assuntos
Flunarizina/farmacologia , Hepacivirus/efeitos dos fármacos , Proteínas Virais de Fusão/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Células Cultivadas , Genótipo , Hepacivirus/genética , Humanos , Proteínas Virais de Fusão/genética
6.
Hepatology ; 62(3): 702-14, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25999047

RESUMO

UNLABELLED: Hepatitis C virus (HCV) is a positive-strand RNA virus that primarily infects human hepatocytes. Infections with HCV constitute a global health problem, with 180 million people currently chronically infected. Recent studies have reported that cholesterol 25-hydroxylase (CH25H) is expressed as an interferon-stimulated gene and mediates antiviral activities against different enveloped viruses through the production of 25-hydroxycholesterol (25HC). However, the intrinsic regulation of human CH25H (hCH25H) expression within the liver as well as its mechanistic effects on HCV infectivity remain elusive. In this study, we characterized the expression of hCH25H using liver biopsies and primary human hepatocytes. In addition, the antiviral properties of this protein and its enzymatic product, 25HC, were further characterized against HCV in tissue culture. Levels of hCH25H messenger RNA were significantly up-regulated both in HCV-positive liver biopsies and in HCV-infected primary human hepatocytes. The expression of hCH25H in primary human hepatocytes was primarily and transiently induced by type I interferon. Transient expression of hCH25H in human hepatoma cells restricted HCV infection in a genotype-independent manner. This inhibition required the enzymatic activity of CH25H. We observed an inhibition of viral membrane fusion during the entry process by 25HC, which was not due to a virucidal effect. Yet the primary effect by 25HC on HCV was at the level of RNA replication, which was observed using subgenomic replicons of two different genotypes. Further analysis using electron microscopy revealed that 25HC inhibited formation of the membranous web, the HCV replication factory, independent of RNA replication. CONCLUSION: Infection with HCV causes up-regulation of interferon-inducible CH25H in vivo, and its product, 25HC, restricts HCV primarily at the level of RNA replication by preventing formation of the viral replication factory.


Assuntos
Hepacivirus/genética , Interferons/farmacologia , Esteroide Hidroxilases/genética , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Biópsia por Agulha , Células Cultivadas , Replicação do DNA/efeitos dos fármacos , Regulação Viral da Expressão Gênica , Hepatite C Crônica/patologia , Hepatócitos/metabolismo , Humanos , Sensibilidade e Especificidade , Regulação para Cima/efeitos dos fármacos
7.
J Virol ; 88(14): 7806-17, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24789779

RESUMO

Primary attachment to cellular glycans is a critical entry step for most human viruses. Some viruses, such as herpes simplex virus type 1 (HSV-1) and hepatitis C virus (HCV), bind to heparan sulfate, whereas others, such as influenza A virus (IAV), bind to sialic acid. Receptor mimetics that interfere with these interactions are active against viruses that bind to either heparan sulfate or to sialic acid. However, no molecule that inhibits the attachment of viruses in both groups has yet been identified. Epigallocatechin gallate (EGCG), a green tea catechin, is active against many unrelated viruses, including several that bind to heparan sulfate or to sialic acid. We sought to identify the basis for the broad-spectrum activity of EGCG. Here, we show that EGCG inhibits the infectivity of a diverse group of enveloped and nonenveloped human viruses. EGCG acts directly on the virions, without affecting the fluidity or integrity of the virion envelopes. Instead, EGCG interacts with virion surface proteins to inhibit the attachment of HSV-1, HCV, IAV, vaccinia virus, adenovirus, reovirus, and vesicular stomatitis virus (VSV) virions. We further show that EGCG competes with heparan sulfate for binding of HSV-1 and HCV virions and with sialic acid for binding of IAV virions. Therefore, EGCG inhibits unrelated viruses by a common mechanism. Most importantly, we have identified EGCG as the first broad-spectrum attachment inhibitor. Our results open the possibility for the development of small molecule broad-spectrum antivirals targeting virion attachment. Importance: This study shows that it is possible to develop a small molecule antiviral or microbicide active against the two largest groups of human viruses: those that bind to glycosaminoglycans and those that bind to sialoglycans. This group includes the vast majority of human viruses, including herpes simplex viruses, cytomegalovirus, influenza virus, poxvirus, hepatitis C virus, HIV, and many others.


Assuntos
Antivirais/farmacologia , Catequina/análogos & derivados , Vírus de DNA/efeitos dos fármacos , Heparitina Sulfato/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Vírus de RNA/efeitos dos fármacos , Ligação Viral/efeitos dos fármacos , Animais , Antivirais/isolamento & purificação , Catequina/isolamento & purificação , Catequina/farmacologia , Chlorocebus aethiops , Vírus de DNA/fisiologia , Cães , Células Madin Darby de Rim Canino , Polissacarídeos/metabolismo , Vírus de RNA/fisiologia , Células Vero , Vírion/efeitos dos fármacos
8.
J Virol ; 88(24): 14350-63, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25275136

RESUMO

UNLABELLED: Host chromatin assembly can function as a barrier to viral infection. Epstein-Barr virus (EBV) establishes latent infection as chromatin-assembled episomes in which all but a few viral genes are transcriptionally silent. The factors that control chromatin assembly and guide transcription regulation during the establishment of latency are not well understood. Here, we demonstrate that the EBV tegument protein BNRF1 binds the histone H3.3 chaperone Daxx to modulate histone mobility and chromatin assembly on the EBV genome during the early stages of primary infection. We demonstrate that BNRF1 substitutes for the repressive cochaperone ATRX to form a ternary complex of BNRF1-Daxx-H3.3-H4, using coimmunoprecipitation and size-exclusion chromatography with highly purified components. FRAP (fluorescence recovery after photobleaching) assays were used to demonstrate that BNRF1 promotes global mobilization of cellular histone H3.3. Mutation of putative nucleotide binding motifs on BNRF1 attenuates the displacement of ATRX from Daxx. We also show by immunofluorescence combined with fluorescence in situ hybridization that BNRF1 is important for the dissociation of ATRX and Daxx from nuclear bodies during de novo infection of primary B lymphocytes. Virion-delivered BNRF1 suppresses Daxx-ATRX-mediated H3.3 loading on viral chromatin as measured by chromatin immunoprecipitation assays and enhances viral gene expression during early infection. We propose that EBV tegument protein BNRF1 replaces ATRX to reprogram Daxx-mediated H3.3 loading, in turn generating chromatin suitable for latent gene expression. IMPORTANCE: Epstein-Barr Virus (EBV) is a human herpesvirus that efficiently establishes latent infection in primary B lymphocytes. Cellular chromatin assembly plays an important role in regulating the establishment of EBV latency. We show that the EBV tegument protein BNRF1 functions to regulate chromatin assembly on the viral genome during early infection. BNRF1 alters the host cellular chromatin assembly to prevent antiviral repressive chromatin and establish chromatin structure permissive for viral gene expression and the establishment of latent infection.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , DNA Helicases/antagonistas & inibidores , Herpesvirus Humano 4/fisiologia , Interações Hospedeiro-Patógeno , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Proteínas do Envelope Viral/metabolismo , Latência Viral , Linfócitos B/virologia , Sítios de Ligação , Células Cultivadas , Cromatografia em Gel , Proteínas Correpressoras , Recuperação de Fluorescência Após Fotodegradação , Imunofluorescência , Humanos , Imunoprecipitação , Hibridização in Situ Fluorescente , Chaperonas Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Multimerização Proteica , Proteína Nuclear Ligada ao X
9.
PLoS Pathog ; 9(10): e1003695, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130491

RESUMO

During lytic infections, HSV-1 genomes are assembled into unstable nucleosomes. The histones required for HSV-1 chromatin assembly, however, are in the cellular chromatin. We have shown that linker (H1) and core (H2B and H4) histones are mobilized during HSV-1 infection, and proposed that the mobilized histones are available for assembly into viral chromatin. However, the actual relevance of histone mobilization remained unknown. We now show that canonical H3.1 and variant H3.3 are also mobilized during HSV-1 infection. Mobilization required no HSV-1 protein expression, although immediate early or early proteins enhanced it. We used the previously known differential association of H3.3 and H3.1 with HSV-1 DNA to test the relevance of histone mobilization. H3.3 binds to HSV-1 genomes first, whereas H3.1 only binds after HSV-1 DNA replication initiates. Consistently, H3.3 and H3.1 were differentially mobilized. H3.1 mobilization decreased with HSV-1 DNA replication, whereas H3.3 mobilization was largely unaffected by it. These results support a model in which previously mobilized H3.1 is immobilized by assembly into viral chromatin during HSV-1 DNA replication, whereas H3.3 is mobilized and assembled into HSV-1 chromatin throughout infection. The differential mobilizations of H3.3 and H3.1 are consistent with their differential assembly into viral chromatin. These data therefore relate nuclear histone dynamics to the composition of viral chromatin and provide the first evidence that histone mobilization relates to viral chromatin assembly.


Assuntos
Cromatina/metabolismo , DNA Viral/metabolismo , Herpes Simples/metabolismo , Herpesvirus Humano 1/metabolismo , Histonas/metabolismo , Modelos Biológicos , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Cromatina/genética , Cromatina/virologia , DNA Viral/genética , Herpes Simples/genética , Herpesvirus Humano 1/genética , Histonas/genética , Humanos , Células Vero
10.
Gut ; 63(7): 1137-49, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23903236

RESUMO

OBJECTIVE: Hepatitis C virus (HCV) infection causes severe liver disease and affects more than 160 million individuals worldwide. People undergoing liver organ transplantation face universal re-infection of the graft. Therefore, affordable antiviral strategies targeting the early stages of infection are urgently needed to prevent the recurrence of HCV infection. The aim of the study was to determine the potency of turmeric curcumin as an HCV entry inhibitor. DESIGN: The antiviral activity of curcumin and its derivatives was evaluated using HCV pseudo-particles (HCVpp) and cell-culture-derived HCV (HCVcc) in hepatoma cell lines and primary human hepatocytes. The mechanism of action was dissected using R18-labelled virions and a membrane fluidity assay. RESULTS: Curcumin treatment had no effect on HCV RNA replication or viral assembly/release. However, co-incubation of HCV with curcumin potently inhibited entry of all major HCV genotypes. Similar antiviral activities were also exerted by other curcumin derivatives but not by tetrahydrocurcumin, suggesting the importance of α,ß-unsaturated ketone groups for the antiviral activity. Expression levels of known HCV receptors were unaltered, while pretreating the virus with the compound reduced viral infectivity without viral lysis. Membrane fluidity experiments indicated that curcumin affected the fluidity of the HCV envelope resulting in impairment of viral binding and fusion. Curcumin has also been found to inhibit cell-to-cell transmission and to be effective in combination with other antiviral agents. CONCLUSIONS: Turmeric curcumin inhibits HCV entry independently of the genotype and in primary human hepatocytes by affecting membrane fluidity thereby impairing virus binding and fusion.


Assuntos
Antivirais/farmacologia , Curcumina/farmacologia , Hepacivirus/efeitos dos fármacos , Hepatite C/prevenção & controle , Hepatócitos/virologia , Internalização do Vírus/efeitos dos fármacos , Animais , Antivirais/uso terapêutico , Linhagem Celular , Linhagem Celular Tumoral , Curcumina/uso terapêutico , Hepacivirus/fisiologia , Hepatite C/virologia , Humanos , Camundongos , Montagem de Vírus/efeitos dos fármacos , Liberação de Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
11.
J Virol ; 87(7): 3640-54, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23283943

RESUMO

Entry of enveloped viruses requires fusion of viral and cellular membranes. Fusion requires the formation of an intermediate stalk structure, in which only the outer leaflets are fused. The stalk structure, in turn, requires the lipid bilayer of the envelope to bend into negative curvature. This process is inhibited by enrichment in the outer leaflet of lipids with larger polar headgroups, which favor positive curvature. Accordingly, phospholipids with such shape inhibit viral fusion. We previously identified a compound, 5-(perylen-3-yl)ethynyl-2'-deoxy-uridine (dUY11), with overall shape and amphipathicity similar to those of these phospholipids. dUY11 inhibited the formation of the negative curvature necessary for stalk formation and the fusion of a model enveloped virus, vesicular stomatitis virus (VSV). We proposed that dUY11 acted by biophysical mechanisms as a result of its shape and amphipathicity. To test this model, we have now characterized the mechanisms against influenza virus and HCV of 5-(perylen-3-yl)ethynyl-arabino-uridine (aUY11), which has shape and amphipathicity similar to those of dUY11 but contains an arabino-nucleoside. aUY11 interacted with envelope lipids to inhibit the infectivity of influenza virus, hepatitis C virus (HCV), herpes simplex virus 1 and 2 (HSV-1/2), and other enveloped viruses. It specifically inhibited the fusion of influenza virus, HCV, VSV, and even protein-free liposomes to cells. Furthermore, aUY11 inhibited the formation of negative curvature in model lipid bilayers. In summary, the arabino-derived aUY11 and the deoxy-derived dUY11 act by the same antiviral mechanisms against several enveloped but otherwise unrelated viruses. Therefore, chemically unrelated compounds of appropriate shape and amphipathicity target virion envelope lipids to inhibit formation of the negative curvature required for fusion, inhibiting infectivity by biophysical, not biochemical, mechanisms.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Vírus da Influenza A/efeitos dos fármacos , Lipídeos de Membrana/metabolismo , Perileno/análogos & derivados , Uridina/análogos & derivados , Internalização do Vírus/efeitos dos fármacos , Animais , Varredura Diferencial de Calorimetria , Chlorocebus aethiops , Cães , Peptídeos e Proteínas de Sinalização Intracelular , Lipossomos , Células Madin Darby de Rim Canino , Camundongos , Microscopia Confocal , Células NIH 3T3 , Peptídeos , Perileno/farmacologia , Especificidade da Espécie , Espectrometria de Fluorescência , Uridina/farmacologia , Células Vero
12.
Virol J ; 11: 160, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25183307

RESUMO

BACKGROUND: The signaling pathways most critical to prion disease pathogenesis are as yet incompletely characterized. We have developed a kinomics approach to identify signaling pathways that are dysregulated during prion pathogenesis. The approach is sensitive and specific enough to detect signaling pathways dysregulated in a simple in vitro model of prion pathogenesis. Here, we used this approach to identify signaling pathways dysregulated during prion pathogenesis in vivo. METHODS: Mice intraperitoneally infected with scrapie (strain RML) were euthanized at 70, 90, 110, 130 days post-infection (dpi) or at terminal stages of disease (155-190 dpi). The levels of 139 protein kinases in brainstem-cerebellum homogenates were analyzed by multiplex Western blots, followed by hierarchical clustering and analyses of activation states. RESULTS: Hierarchical and functional clustering identified CaMK4ß and MST1 signaling pathways as potentially dysregulated. Targeted analyses revealed that CaMK4ß and its downstream substrate CREB, which promotes neuronal survival, were activated at 70 and 90 dpi in cortical, subcortical and brainstem-cerebellum homogenates from scrapie-infected mice. The activation levels of CaMK4ß/CREB signaling returned to those in mock-infected mice at 110 dpi, whereas MST1, which promotes neuronal death, became activated at 130 dpi. CONCLUSION: Pro-survival CaMK4ß/CREB signaling is activated in mouse scrapie at earlier times and later inhibited, whereas pro-death MST1 signaling is activated at these later times.


Assuntos
Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Scrapie/metabolismo , Animais , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Regulação Enzimológica da Expressão Gênica , Fator de Crescimento de Hepatócito/genética , Camundongos , Proteínas Proto-Oncogênicas/genética , Sensibilidade e Especificidade , Transdução de Sinais , Transcriptoma
13.
Virol J ; 11: 175, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25280966

RESUMO

BACKGROUND: Dysregulated protein kinase signaling is involved in the pathogenesis of many chronic diseases. However, the dysregulated signaling pathways critical to prion pathogenesis remain incompletely characterized. Global analyses of signaling pathways may be useful to better characterize these pathways. We therefore set out to develop such global assays. To this end, we used as a model cytoplasmic mutants of the cellular prion protein (PrPC), which are toxic to N2a neuroblastoma cells. We tested the global assays for their sensitivity to detect changes in signaling pathways in cells expressing cytoplasmic PrP mutants. METHODS: We developed a targeted proteomics (kinomics) approach using multiplex Western blots to identify signaling pathways dysregulated in chronic neurological pathologies. We tested the approach for its potential ability to detect signaling changes in N2a cells expressing cytoplasmic PrP mutants. RESULTS: Multiplex Western blots were designed to quantitate the expression levels of 137 protein kinases in a single membrane and using only 1.2 mg of sample. The response of the blots was sensitive and linear to changes of 6% in protein levels. Hierarchical and functional clustering of the relative expression levels identified an mTOR signaling pathway as potentially dysregulated in N2a cells expressing cytoplasmic PrP. The mTOR signaling pathway regulates global protein synthesis, which is inhibited in cells expressing cytoplasmic PrP. The levels of proteins involved in the Akt1/p70S6K branch of mTOR signaling changed in synchrony with time of cytoplasmic PrP expression. Three kinases in this pathway, Akt, p70S6K, and eIF4B were in their inactive states, as evaluated by phosphorylation of their regulatory sites. CONCLUSION: The results presented are consistent with the previously reported inhibition of Akt/p70S6K/eIF4B signaling as mediating pathogenesis of cytoplasmic PrP. We conclude that the kinomic analyses are sensitive and specific to detect signaling pathways dysregulated in a simple in vitro model of PrP pathogenesis.


Assuntos
Western Blotting/métodos , Citoplasma/metabolismo , Proteínas PrPC/metabolismo , Proteínas/metabolismo , Proteômica/métodos , Transdução de Sinais , Linhagem Celular Tumoral , Citoplasma/química , Citoplasma/genética , Humanos , Proteínas PrPC/genética , Proteínas/química , Proteínas/genética
14.
J Virol ; 86(20): 11287-300, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22875975

RESUMO

Herpes simplex virus 1 (HSV-1) DNA is chromatinized during latency and consequently regularly digested by micrococcal nuclease (MCN) to nucleosome-size fragments. In contrast, MCN digests HSV-1 DNA in lytically infected cells to mostly heterogeneous sizes. Yet HSV-1 DNA coimmunoprecipitates with histones during lytic infections. We have shown that at 5 h postinfection, most nuclear HSV-1 DNA is in particularly unstable nucleoprotein complexes and consequently is more accessible to MCN than DNA in cellular chromatin. HSV-1 DNA was quantitatively recovered at this time in complexes with the biophysical properties of mono- to polynucleosomes following a modified MCN digestion developed to detect potential unstable intermediates. We proposed that most HSV-1 DNA is in unstable nucleosome-like complexes during lytic infections. Physiologically, nucleosome assembly typically associates with DNA replication, although DNA replication transiently disrupts nucleosomes. It therefore remained unclear whether the instability of the HSV-1 nucleoprotein complexes was related to the ongoing viral DNA replication. Here we tested whether HSV-1 DNA is in unstable nucleosome-like complexes before, during, or after the peak of viral DNA replication or when HSV-1 DNA replication is inhibited. HSV-1 DNA was quantitatively recovered in complexes fractionating as mono- to polynucleosomes from nuclei harvested at 2, 5, 7, or 9 h after infection, even if viral DNA replication was inhibited. Therefore, most HSV-1 DNA is in unstable nucleosome-like complexes throughout the lytic replication cycle, and the instability of these complexes is surprisingly independent of HSV-1 DNA replication. The specific accessibility of nuclear HSV-1 DNA, however, varied at different times after infection.


Assuntos
Replicação do DNA , DNA Viral/genética , Herpesvirus Humano 1/genética , Nucleossomos/genética , Replicação Viral/genética , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Chlorocebus aethiops , Cromatina/genética , Cromatina/metabolismo , DNA Viral/biossíntese , DNA Viral/metabolismo , Herpesvirus Humano 1/metabolismo , Nucleoproteínas/genética , Células Vero
16.
Proc Natl Acad Sci U S A ; 107(40): 17339-44, 2010 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-20823220

RESUMO

Antiviral drugs targeting viral proteins often result in prompt selection for resistance. Moreover, the number of viral targets is limited. Novel antiviral targets are therefore needed. The unique characteristics of fusion between virion envelopes and cell membranes may provide such targets. Like all fusing bilayers, viral envelopes locally adopt hourglass-shaped stalks during the initial stages of fusion, a process that requires local negative membrane curvature. Unlike cellular vesicles, however, viral envelopes do not redistribute lipids between leaflets, can only use the energy released by virion proteins, and fuse to the extracellular leaflets of cell membranes. Enrichment in phospholipids with hydrophilic heads larger than their hydrophobic tails in the convex outer leaflet of vesicles favors positive curvature, therefore increasing the activation energy barrier for fusion. Such phospholipids can increase the activation barrier beyond the energy provided by virion proteins, thereby inhibiting viral fusion. However, phospholipids are not pharmacologically useful. We show here that a family of synthetic rigid amphiphiles of shape similar to such phospholipids, RAFIs (rigid amphipathic fusion inhibitors), inhibit the infectivity of several otherwise unrelated enveloped viruses, including hepatitis C and HSV-1 and -2 (lowest apparent IC(50) 48 nM), with no cytotoxic or cytostatic effects (selectivity index > 3,000) by inhibiting the increased negative curvature required for the initial stages of fusion.


Assuntos
Antivirais , Proteínas Virais/metabolismo , Internalização do Vírus/efeitos dos fármacos , Vírus/efeitos dos fármacos , Animais , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacologia , Linhagem Celular , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/patogenicidade , Herpesvirus Humano 1/ultraestrutura , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/metabolismo , Estrutura Molecular , Vírion/metabolismo , Vírion/patogenicidade , Vírion/ultraestrutura , Vírus/patogenicidade , Vírus/ultraestrutura
17.
bioRxiv ; 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38187672

RESUMO

Herpes simplex virus 1 (HSV-1) transcription is restricted in latently infected neurons and the genomes are in mostly silenced chromatin, whereas all viral genes are transcribed in lytically infected cells, in which the genomes are dynamically chromatinized. Epigenetic regulation modulates HSV-1 transcription during lytic, latent, and reactivating infections, but the precise mechanisms are not fully defined. Nucleosomes are dynamic; they slide, breathe, assemble and disassemble. We and others have proposed that the most dynamic HSV-1 chromatin is transcriptionally competent whereas the least dynamic is silenced. However, the mechanisms yielding the unusually dynamic viral chromatin remain unknown. Histone variants affect nucleosome dynamics. The dynamics of H2A, H2A.X and macroH2A were enhanced in infected cells, whereas those of H2A.B uniquely decreased. We constructed stably transduced cells expressing tagged histone H2A, H2A.B, macroH2A, or H2B, which assembles the H2A/H2B nucleosome dimers with all H2A variants. All H2A variants, ectopic, and endogenous H2B, were assembled into HSV-1 chromatin evenly throughout the genome, but canonical H2A was relatively depleted from the viral chromatin whereas H2A.B was enriched in the most dynamic viral chromatin. When viral transcription was restricted, H2A.B became as depleted from the viral chromatin through the entire genome as H2A. We propose that lytic HSV-1 nucleosomes are enriched in the dynamic variant H2A.B/H2B dimers to promote HSV-1 chromatin dynamics and transcriptional competency, and conclude that the dynamics of HSV-1 chromatin are determined in part by the H2A variants. Importance: HSV-1 transcription is epigenetically regulated during latent and lytic infections, and epigenetic inhibitors have been proposed as potential antiviral drugs to modulate latency and reactivation. However, the detailed mechanisms of regulation of HSV-1 transcription by epigenetics have not been fully characterized and may differ from those regulating cellular transcription. In particular, the lytic HSV-1 chromatin is unusually dynamic, whereas the latent silenced one is not, but the mechanisms resulting in the unique dynamics of the lytic chromatin remain unknown. Here we identify the enrichment on the highly dynamic histone 2A variant H2A in the most dynamic viral chromatin, which provides a mechanistic understanding for its unique dynamics. Future work to identify the mechanisms of enrichment in H2A.B on the viral chromatin may identify novel druggable epigenetic regulators that modulate HSV-1 latency and reactivation.

18.
Antiviral Res ; 211: 105521, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596323

RESUMO

The 35th International Conference on Antiviral Research (ICAR), sponsored by the International Society for Antiviral Research (ISAR), was held in Seattle, Washington, USA, on March 21-25, 2022 and concurrently through an interactive remote meeting platform. This report gives an overview of the conference on behalf of the society. It provides a general review of the meeting and awardees, summarizing the presentations and their main conclusions from the perspective of researchers active in many different areas of antiviral research and development. Through ICAR, leaders in the field of antiviral research were able to showcase their efforts, as participants learned about key advances in the field. The impact of these efforts was exemplified by many presentations on SARS-CoV-2 demonstrating the remarkable response to the ongoing pandemic, as well as future pandemic preparedness, by members of the antiviral research community. As we address ongoing outbreaks and seek to mitigate those in the future, this meeting continues to support outstanding opportunities for the exchange of knowledge and expertise while fostering cross-disciplinary collaborations in therapeutic and vaccine development. The 36th ICAR will be held in Lyon, France, March 13-17, 2023.


Assuntos
Antivirais , COVID-19 , Humanos , Antivirais/uso terapêutico , Washington , Complexo Ferro-Dextran , SARS-CoV-2
19.
Antiviral Res ; 217: 105678, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37494979

RESUMO

The 36th International Conference on Antiviral Research (ICAR), sponsored by the International Society for Antiviral Research (ISAR), was held March 13-17, 2023, in Lyon, France, and concurrently through an interactive remote meeting platform. Here we provide a report summarizing the presentations at the 36th ICAR, including the ISAR speaker awards. We also detail special events, sessions, and additional awards conferred at the meeting. ICAR returned to in-person meetings in 2022, convening in Seattle, WA, USA. The 36th ICAR is the first in-person meeting of the society in Europe since the beginning of the COVID-19 pandemic, which restricted most events to virtual attendance to help mitigate the spread and subsequent public health impact of SARS-CoV-2. An exceptionally high number of registrants and record attendance at this year's ICAR, along with a vast array of demonstrable expertise in a variety of antiviral research-related fields, reflected a strong and growing antiviral research community committed to improving health outcomes from viral diseases, including SARS-CoV-2, and to future pandemic preparedness. This report highlights the breadth of expertise, quality of research, and notable advancements that were contributed by members of ISAR and other participants at the meeting. ICAR aims to continue to provide a platform for sharing information, fostering collaborations, and supporting trainees in the field of antiviral research. The 37th ICAR will be held in Gold Coast, Australia, May 20-24, 2024.


Assuntos
Antivirais , COVID-19 , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Complexo Ferro-Dextran , Pandemias , SARS-CoV-2
20.
J Virol ; 85(24): 13234-52, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21994445

RESUMO

The infecting genomes of herpes simplex virus 1 (HSV-1) are assembled into unstable nucleosomes soon after nuclear entry. The source of the histones that bind to these genomes has yet to be addressed. However, infection inhibits histone synthesis. The histones that bind to HSV-1 genomes are therefore most likely those previously bound in cellular chromatin. In order for preexisting cellular histones to associate with HSV-1 genomes, however, they must first disassociate from cellular chromatin. Consistently, we have shown that linker histones are mobilized during HSV-1 infection. Chromatinization of HSV-1 genomes would also require the association of core histones. We therefore evaluated the mobility of the core histones H2B and H4 as measures of the mobilization of H2A-H2B dimers and the more stable H3-H4 core tetramer. H2B and H4 were mobilized during infection. Their mobilization increased the levels of H2B and H4 in the free pools and decreased the rate of H2B fast chromatin exchange. The histones in the free pools would then be available to bind to HSV-1 genomes. The mobilization of H2B occurred independently from HSV-1 protein expression or DNA replication although expression of HSV-1 immediate-early (IE) or early (E) proteins enhanced it. The mobilization of core histones H2B and H4 supports a model in which the histones that associate with HSV-1 genomes are those that were previously bound in cellular chromatin. Moreover, this mobilization is consistent with the assembly of H2A-H2B and H3-H4 dimers into unstable nucleosomes with HSV-1 genomes.


Assuntos
Herpesvirus Humano 1/patogenicidade , Histonas/metabolismo , Interações Hospedeiro-Patógeno , Animais , Linhagem Celular , Chlorocebus aethiops , DNA Viral/metabolismo , Humanos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA