Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 181(2): 236-249, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32302568

RESUMO

Crucial transitions in cancer-including tumor initiation, local expansion, metastasis, and therapeutic resistance-involve complex interactions between cells within the dynamic tumor ecosystem. Transformative single-cell genomics technologies and spatial multiplex in situ methods now provide an opportunity to interrogate this complexity at unprecedented resolution. The Human Tumor Atlas Network (HTAN), part of the National Cancer Institute (NCI) Cancer Moonshot Initiative, will establish a clinical, experimental, computational, and organizational framework to generate informative and accessible three-dimensional atlases of cancer transitions for a diverse set of tumor types. This effort complements both ongoing efforts to map healthy organs and previous large-scale cancer genomics approaches focused on bulk sequencing at a single point in time. Generating single-cell, multiparametric, longitudinal atlases and integrating them with clinical outcomes should help identify novel predictive biomarkers and features as well as therapeutically relevant cell types, cell states, and cellular interactions across transitions. The resulting tumor atlases should have a profound impact on our understanding of cancer biology and have the potential to improve cancer detection, prevention, and therapeutic discovery for better precision-medicine treatments of cancer patients and those at risk for cancer.


Assuntos
Transformação Celular Neoplásica/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral/fisiologia , Atlas como Assunto , Transformação Celular Neoplásica/patologia , Genômica/métodos , Humanos , Medicina de Precisão/métodos , Análise de Célula Única/métodos
2.
Nature ; 608(7924): 766-777, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35948637

RESUMO

Myocardial infarction is a leading cause of death worldwide1. Although advances have been made in acute treatment, an incomplete understanding of remodelling processes has limited the effectiveness of therapies to reduce late-stage mortality2. Here we generate an integrative high-resolution map of human cardiac remodelling after myocardial infarction using single-cell gene expression, chromatin accessibility and spatial transcriptomic profiling of multiple physiological zones at distinct time points in myocardium from patients with myocardial infarction and controls. Multi-modal data integration enabled us to evaluate cardiac cell-type compositions at increased resolution, yielding insights into changes of the cardiac transcriptome and epigenome through the identification of distinct tissue structures of injury, repair and remodelling. We identified and validated disease-specific cardiac cell states of major cell types and analysed them in their spatial context, evaluating their dependency on other cell types. Our data elucidate the molecular principles of human myocardial tissue organization, recapitulating a gradual cardiomyocyte and myeloid continuum following ischaemic injury. In sum, our study provides an integrative molecular map of human myocardial infarction, represents an essential reference for the field and paves the way for advanced mechanistic and therapeutic studies of cardiac disease.


Assuntos
Remodelamento Atrial , Montagem e Desmontagem da Cromatina , Perfilação da Expressão Gênica , Infarto do Miocárdio , Análise de Célula Única , Remodelação Ventricular , Remodelamento Atrial/genética , Estudos de Casos e Controles , Cromatina/genética , Epigenoma , Humanos , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fatores de Tempo , Remodelação Ventricular/genética
3.
Nature ; 595(7865): 114-119, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33915568

RESUMO

Respiratory failure is the leading cause of death in patients with severe SARS-CoV-2 infection1,2, but the host response at the lung tissue level is poorly understood. Here we performed single-nucleus RNA sequencing of about 116,000 nuclei from the lungs of nineteen individuals who died of COVID-19 and underwent rapid autopsy and seven control individuals. Integrated analyses identified substantial alterations in cellular composition, transcriptional cell states, and cell-to-cell interactions, thereby providing insight into the biology of lethal COVID-19. The lungs from individuals with COVID-19 were highly inflamed, with dense infiltration of aberrantly activated monocyte-derived macrophages and alveolar macrophages, but had impaired T cell responses. Monocyte/macrophage-derived interleukin-1ß and epithelial cell-derived interleukin-6 were unique features of SARS-CoV-2 infection compared to other viral and bacterial causes of pneumonia. Alveolar type 2 cells adopted an inflammation-associated transient progenitor cell state and failed to undergo full transition into alveolar type 1 cells, resulting in impaired lung regeneration. Furthermore, we identified expansion of recently described CTHRC1+ pathological fibroblasts3 contributing to rapidly ensuing pulmonary fibrosis in COVID-19. Inference of protein activity and ligand-receptor interactions identified putative drug targets to disrupt deleterious circuits. This atlas enables the dissection of lethal COVID-19, may inform our understanding of long-term complications of COVID-19 survivors, and provides an important resource for therapeutic development.


Assuntos
COVID-19/patologia , COVID-19/virologia , Pulmão/patologia , SARS-CoV-2/patogenicidade , Análise de Célula Única , Idoso , Idoso de 80 Anos ou mais , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/virologia , Atlas como Assunto , Autopsia , COVID-19/imunologia , Estudos de Casos e Controles , Feminino , Fibroblastos/patologia , Fibrose/patologia , Fibrose/virologia , Humanos , Inflamação/patologia , Inflamação/virologia , Macrófagos/patologia , Macrófagos/virologia , Macrófagos Alveolares/patologia , Macrófagos Alveolares/virologia , Masculino , Pessoa de Meia-Idade , Plasmócitos/imunologia , Linfócitos T/imunologia
4.
Nat Methods ; 20(3): 424-431, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36864197

RESUMO

As spatially resolved multiplex profiling of RNA and proteins becomes more prominent, it is increasingly important to understand the statistical power available to test specific hypotheses when designing and interpreting such experiments. Ideally, it would be possible to create an oracle that predicts sampling requirements for generalized spatial experiments. However, the unknown number of relevant spatial features and the complexity of spatial data analysis make this challenging. Here, we enumerate multiple parameters of interest that should be considered in the design of a properly powered spatial omics study. We introduce a method for tunable in silico tissue (IST) generation and use it with spatial profiling data sets to construct an exploratory computational framework for spatial power analysis. Finally, we demonstrate that our framework can be applied across diverse spatial data modalities and tissues of interest. While we demonstrate ISTs in the context of spatial power analysis, these simulated tissues have other potential use cases, including spatial method benchmarking and optimization.


Assuntos
Proteínas , RNA , Proteínas/química , RNA/química , Técnicas In Vitro , Multiômica
5.
Nat Methods ; 19(3): 311-315, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34824477

RESUMO

Highly multiplexed tissue imaging makes detailed molecular analysis of single cells possible in a preserved spatial context. However, reproducible analysis of large multichannel images poses a substantial computational challenge. Here, we describe a modular and open-source computational pipeline, MCMICRO, for performing the sequential steps needed to transform whole-slide images into single-cell data. We demonstrate the use of MCMICRO on tissue and tumor images acquired using multiple imaging platforms, thereby providing a solid foundation for the continued development of tissue imaging software.


Assuntos
Processamento de Imagem Assistida por Computador , Neoplasias , Diagnóstico por Imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Software
6.
Nat Methods ; 16(10): 987-990, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31501547

RESUMO

Spatial and molecular characteristics determine tissue function, yet high-resolution methods to capture both concurrently are lacking. Here, we developed high-definition spatial transcriptomics, which captures RNA from histological tissue sections on a dense, spatially barcoded bead array. Each experiment recovers several hundred thousand transcript-coupled spatial barcodes at 2-µm resolution, as demonstrated in mouse brain and primary breast cancer. This opens the way to high-resolution spatial analysis of cells and tissues.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Animais , Neoplasias da Mama/patologia , Feminino , Humanos , Camundongos , Bulbo Olfatório/citologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Análise Serial de Tecidos
8.
Nat Methods ; 14(9): 873-876, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28783155

RESUMO

Single-cell, spatially resolved omics analysis of tissues is poised to transform biomedical research and clinical practice. We have developed an open-source, computational histology topography cytometry analysis toolbox (histoCAT) to enable interactive, quantitative, and comprehensive exploration of individual cell phenotypes, cell-cell interactions, microenvironments, and morphological structures within intact tissues. We highlight the unique abilities of histoCAT through analysis of highly multiplexed mass cytometry images of human breast cancer tissues.


Assuntos
Comunicação Celular/fisiologia , Citometria de Fluxo/métodos , Imagem Molecular/métodos , Proteoma/metabolismo , Software , Análise Serial de Tecidos/métodos , Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Interface Usuário-Computador
10.
Nat Methods ; 11(4): 417-22, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24584193

RESUMO

Mass cytometry enables high-dimensional, single-cell analysis of cell type and state. In mass cytometry, rare earth metals are used as reporters on antibodies. Analysis of metal abundances using the mass cytometer allows determination of marker expression in individual cells. Mass cytometry has previously been applied only to cell suspensions. To gain spatial information, we have coupled immunohistochemical and immunocytochemical methods with high-resolution laser ablation to CyTOF mass cytometry. This approach enables the simultaneous imaging of 32 proteins and protein modifications at subcellular resolution; with the availability of additional isotopes, measurement of over 100 markers will be possible. We applied imaging mass cytometry to human breast cancer samples, allowing delineation of cell subpopulations and cell-cell interactions and highlighting tumor heterogeneity. Imaging mass cytometry complements existing imaging approaches. It will enable basic studies of tissue heterogeneity and function and support the transition of medicine toward individualized molecularly targeted diagnosis and therapies.


Assuntos
Neoplasias da Mama/metabolismo , Citometria por Imagem/métodos , Proteínas de Neoplasias/metabolismo , Linhagem Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Proteínas de Neoplasias/genética
11.
Cytometry A ; 87(10): 936-42, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26147066

RESUMO

The combination of mass cytometry and immunohistochemistry (IHC) enables new histopathological imaging methods in which dozens of proteins and protein modifications can be visualized simultaneously in a single tissue section. The power of multiplexing combined with spatial information and quantification was recently illustrated on breast cancer tissue and was described as next-generation IHC. Robust, accurate, and high-throughput cell segmentation is crucial for the analysis of this new generation of IHC data. To this end, we propose a watershed-based cell segmentation, which uses a nuclear marker and multiple membrane markers, the latter automatically selected based on their correlation. In comparison with the state-of-the-art segmentation pipelines, which are only using a single marker for object detection, we could show that the use of multiple markers can significantly increase the segmentation power, and thus, multiplexed information should be used and not ignored during the segmentation. Furthermore, we provide a novel, user-friendly open-source toolbox for the automatic segmentation of multiplexed histopathological images.


Assuntos
Neoplasias da Mama/diagnóstico , Diagnóstico por Imagem/métodos , Citometria de Fluxo/métodos , Análise de Célula Única , Neoplasias da Mama/patologia , Feminino , Humanos , Imuno-Histoquímica
12.
bioRxiv ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38854106

RESUMO

Chromosomal instability (CIN) is a hallmark of cancer that drives metastasis, immune evasion and treatment resistance. CIN results from chromosome mis-segregation events during anaphase, as excessive chromatin is packaged in micronuclei (MN), that can be enumerated to quantify CIN. Despite recent advancements in automation through computer vision and machine learning, the assessment of CIN remains a predominantly manual and time-consuming task, thus hampering important work in the field. Here, we present micronuclAI , a novel pipeline for automated and reliable quantification of MN of varying size, morphology and location from DNA-only stained images. In micronucleAI , single-cell crops are extracted from high-resolution microscopy images with the help of segmentation masks, which are then used to train a convolutional neural network (CNN) to output the number of MN associated with each cell. The pipeline was evaluated against manual single-cell level counts by experts and against routinely used MN ratio within the complete image. The classifier was able to achieve a weighted F1 score of 0.937 on the test dataset and the complete pipeline can achieve close to human-level performance on various datasets derived from multiple human and murine cancer cell lines. The pipeline achieved a root-mean-square deviation (RMSE) value of 0.0041, an R 2 of 0.87 and a Pearson's correlation of 0.938 on images obtained at 10X magnification. We tested the approach in otherwise isogenic cell lines in which we genetically dialed up or down CIN rates, and also on a publicly available image data set (obtained at 100X) and achieved an RMSE value of 0.0159, an R 2 of 0.90, and a Pearson's correlation of 0.951. Given the increasing interest in developing therapies for CIN-driven cancers, this method provides an important, scalable, and rapid approach to quantifying CIN on routinely obtained images. We release a GUI-implementation for easy access and utilization of the pipeline.

13.
ArXiv ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38351940

RESUMO

Together with the molecular knowledge of genes and proteins, biological images promise to significantly enhance the scientific understanding of complex cellular systems and to advance predictive and personalized therapeutic products for human health. For this potential to be realized, quality-assured image data must be shared among labs at a global scale to be compared, pooled, and reanalyzed, thus unleashing untold potential beyond the original purpose for which the data was generated. There are two broad sets of requirements to enable image data sharing in the life sciences. One set of requirements is articulated in the companion White Paper entitled "Enabling Global Image Data Sharing in the Life Sciences," which is published in parallel and addresses the need to build the cyberinfrastructure for sharing the digital array data (arXiv:2401.13023 [q-bio.OT], https://doi.org/10.48550/arXiv.2401.13023). In this White Paper, we detail a broad set of requirements, which involves collecting, managing, presenting, and propagating contextual information essential to assess the quality, understand the content, interpret the scientific implications, and reuse image data in the context of the experimental details. We start by providing an overview of the main lessons learned to date through international community activities, which have recently made considerable progress toward generating community standard practices for imaging Quality Control (QC) and metadata. We then provide a clear set of recommendations for amplifying this work. The driving goal is to address remaining challenges, and democratize access to common practices and tools for a spectrum of biomedical researchers, regardless of their expertise, access to resources, and geographical location.

14.
Genome Biol ; 23(1): 97, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35422018

RESUMO

The advancement of highly multiplexed spatial technologies requires scalable methods that can leverage spatial information. We present MISTy, a flexible, scalable, and explainable machine learning framework for extracting relationships from any spatial omics data, from dozens to thousands of measured markers. MISTy builds multiple views focusing on different spatial or functional contexts to dissect different effects. We evaluated MISTy on in silico and breast cancer datasets measured by imaging mass cytometry and spatial transcriptomics. We estimated structural and functional interactions coming from different spatial contexts in breast cancer and demonstrated how to relate MISTy's results to clinical features.


Assuntos
Neoplasias da Mama , Aprendizado de Máquina , Neoplasias da Mama/genética , Feminino , Humanos
15.
Commun Biol ; 5(1): 129, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149753

RESUMO

The inflamed rheumatic joint is a highly heterogeneous and complex tissue with dynamic recruitment and expansion of multiple cell types that interact in multifaceted ways within a localized area. Rheumatoid arthritis synovium has primarily been studied either by immunostaining or by molecular profiling after tissue homogenization. Here, we use Spatial Transcriptomics, where tissue-resident RNA is spatially labeled in situ with barcodes in a transcriptome-wide fashion, to study local tissue interactions at the site of chronic synovial inflammation. We report comprehensive spatial RNA-Seq data coupled to cell type-specific localization patterns at and around organized structures of infiltrating leukocyte cells in the synovium. Combining morphological features and high-throughput spatially resolved transcriptomics may be able to provide higher statistical power and more insights into monitoring disease severity and treatment-specific responses in seropositive and seronegative rheumatoid arthritis.


Assuntos
Artrite Reumatoide , Transcriptoma , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Humanos , Membrana Sinovial/metabolismo
16.
Cell Genom ; 2(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36419822

RESUMO

Intra-tumor heterogeneity (ITH) of human tumors is important for tumor progression, treatment response, and drug resistance. However, the spatial distribution of ITH remains incompletely understood. Here, we present spatial analysis of ITH in lung adenocarcinomas from 147 patients using multi-region mass spectrometry of >5,000 regions, single-cell copy number sequencing of ~2,000 single cells, and cyclic immunofluorescence of >10 million cells. We identified two distinct spatial patterns among tumors, termed clustered and random geographic diversification (GD). These patterns were observed in the same samples using both proteomic and genomic data. The random proteomic GD pattern, which is characterized by decreased cell adhesion and lower levels of tumor-interacting endothelial cells, was significantly associated with increased risk of recurrence or death in two independent patient cohorts. Our study presents comprehensive spatial mapping of ITH in lung adenocarcinoma and provides insights into the mechanisms and clinical consequences of GD.

17.
Science ; 376(6592): eabi8175, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35482859

RESUMO

Establishing causal relationships between genetic alterations of human cancers and specific phenotypes of malignancy remains a challenge. We sequentially introduced mutations into healthy human melanocytes in up to five genes spanning six commonly disrupted melanoma pathways, forming nine genetically distinct cellular models of melanoma. We connected mutant melanocyte genotypes to malignant cell expression programs in vitro and in vivo, replicative immortality, malignancy, rapid tumor growth, pigmentation, metastasis, and histopathology. Mutations in malignant cells also affected tumor microenvironment composition and cell states. Our melanoma models shared genotype-associated expression programs with patient melanomas, and a deep learning model showed that these models partially recapitulated genotype-associated histopathological features as well. Thus, a progressive series of genome-edited human cancer models can causally connect genotypes carrying multiple mutations to phenotype.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanócitos/metabolismo , Melanoma/patologia , Mutação , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Microambiente Tumoral/genética
18.
Nat Genet ; 54(8): 1178-1191, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35902743

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal and treatment-refractory cancer. Molecular stratification in pancreatic cancer remains rudimentary and does not yet inform clinical management or therapeutic development. Here, we construct a high-resolution molecular landscape of the cellular subtypes and spatial communities that compose PDAC using single-nucleus RNA sequencing and whole-transcriptome digital spatial profiling (DSP) of 43 primary PDAC tumor specimens that either received neoadjuvant therapy or were treatment naive. We uncovered recurrent expression programs across malignant cells and fibroblasts, including a newly identified neural-like progenitor malignant cell program that was enriched after chemotherapy and radiotherapy and associated with poor prognosis in independent cohorts. Integrating spatial and cellular profiles revealed three multicellular communities with distinct contributions from malignant, fibroblast and immune subtypes: classical, squamoid-basaloid and treatment enriched. Our refined molecular and cellular taxonomy can provide a framework for stratification in clinical trials and serve as a roadmap for therapeutic targeting of specific cellular phenotypes and multicellular interactions.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/terapia , Perfilação da Expressão Gênica , Humanos , Terapia Neoadjuvante , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Prognóstico , Transcriptoma/genética , Neoplasias Pancreáticas
19.
Nat Med ; 27(6): 985-992, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33941922

RESUMO

Despite initial responses1-3, most melanoma patients develop resistance4 to immune checkpoint blockade (ICB). To understand the evolution of resistance, we studied 37 tumor samples over 9 years from a patient with metastatic melanoma with complete clinical response to ICB followed by delayed recurrence and death. Phylogenetic analysis revealed co-evolution of seven lineages with multiple convergent, but independent resistance-associated alterations. All recurrent tumors emerged from a lineage characterized by loss of chromosome 15q, with post-treatment clones acquiring additional genomic driver events. Deconvolution of bulk RNA sequencing and highly multiplexed immunofluorescence (t-CyCIF) revealed differences in immune composition among different lineages. Imaging revealed a vasculogenic mimicry phenotype in NGFRhi tumor cells with high PD-L1 expression in close proximity to immune cells. Rapid autopsy demonstrated two distinct NGFR spatial patterns with high polarity and proximity to immune cells in subcutaneous tumors versus a diffuse spatial pattern in lung tumors, suggesting different roles of this neural-crest-like program in different tumor microenvironments. Broadly, this study establishes a high-resolution map of the evolutionary dynamics of resistance to ICB, characterizes a de-differentiated neural-crest tumor population in melanoma immunotherapy resistance and describes site-specific differences in tumor-immune interactions via longitudinal analysis of a patient with melanoma with an unusual clinical course.


Assuntos
Antígeno B7-H1/genética , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/terapia , Proteínas do Tecido Nervoso/genética , Receptores de Fator de Crescimento Neural/genética , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Cromossomos Humanos Par 15/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Imunoterapia/efeitos adversos , Masculino , Melanoma/genética , Melanoma/imunologia , Melanoma/patologia , Metástase Neoplásica , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/terapia , Proteínas do Tecido Nervoso/imunologia , Filogenia , Receptores de Fator de Crescimento Neural/imunologia , Microambiente Tumoral/efeitos dos fármacos
20.
Artigo em Inglês | MEDLINE | ID: mdl-33283211

RESUMO

Interest is growing rapidly in using deep learning to classify biomedical images, and interpreting these deep-learned models is necessary for life-critical decisions and scientific discovery. Effective interpretation techniques accelerate biomarker discovery and provide new insights into the etiology, diagnosis, and treatment of disease. Most interpretation techniques aim to discover spatially-salient regions within images, but few techniques consider imagery with multiple channels of information. For instance, highly multiplexed tumor and tissue images have 30-100 channels and require interpretation methods that work across many channels to provide deep molecular insights. We propose a novel channel embedding method that extracts features from each channel. We then use these features to train a classifier for prediction. Using this channel embedding, we apply an interpretation method to rank the most discriminative channels. To validate our approach, we conduct an ablation study on a synthetic dataset. Moreover, we demonstrate that our method aligns with biological findings on highly multiplexed images of breast cancer cells while outperforming baseline pipelines. Code is available at https://sabdelmagid.github.io/miccai2020-project/.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA