Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 110(20): E1857-66, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23630282

RESUMO

Vertebrate Toll-like receptor 5 (TLR5) recognizes bacterial flagellin proteins and activates innate immune responses to motile bacteria. In addition, activation of TLR5 signaling can inhibit growth of TLR5-expressing tumors and protect normal tissues from radiation and ischemia-reperfusion injuries. To understand the mechanisms behind these phenomena at the organismal level, we assessed nuclear factor kappa B (NF-κB) activation (indicative of TLR5 signaling) in tissues and cells of mice treated with CBLB502, a pharmacologically optimized flagellin derivative. This identified the liver and gastrointestinal tract as primary CBLB502 target organs. In particular, liver hepatocytes were the main cell type directly and specifically responding to systemic administration of CBLB502 but not to that of the TLR4 agonist LPS. To assess CBLB502 impact on other pathways, we created multireporter mice with hepatocytes transduced in vivo with reporters for 46 inducible transcription factor families and found that along with NF-κB, CBLB502 strongly activated STAT3-, phenobarbital-responsive enhancer module (PREM), and activator protein 1 (AP-1-) -driven pathways. Livers of CBLB502-treated mice displayed induction of numerous immunomodulatory factors and massive recruitment of various types of immune cells. This led to inhibition of growth of liver metastases of multiple tumors regardless of their TLR5 status. The changed liver microenvironment was not, however, hepatotoxic, because CBLB502 induced resistance to Fas-mediated apoptosis in normal liver cells. Temporary occlusion of liver blood circulation prevented CBLB502 from protecting hematopoietic progenitors in lethally irradiated mice, indicating involvement of a factor secreted by responding liver cells. These results define the liver as the key mediator of TLR5-dependent effects in vivo and suggest clinical applications for TLR5 agonists as hepatoprotective and antimetastatic agents.


Assuntos
Fígado/metabolismo , Peptídeos/farmacologia , Fator de Transcrição STAT3/metabolismo , Receptor 5 Toll-Like/agonistas , Animais , Anticarcinógenos/farmacologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Feminino , Citometria de Fluxo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Células Matadoras Naturais/metabolismo , Fígado/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Transplante de Neoplasias , Neutrófilos/metabolismo , Protetores contra Radiação/farmacologia , Transdução de Sinais , Receptor fas/metabolismo
2.
J Inflamm Res ; 13: 357-368, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32801829

RESUMO

PURPOSE: Pathogens consist of a wide variety of evolutionarily conserved molecular structures that are recognized by pattern recognition receptors (PRRs) of innate immunity. Reasonably assuming that no single PRR is ever likely to be the sole trigger of the immune response during infection, a great deal remains unknown about collaborative mechanisms and consequential crosstalk effects between multiple PRRs belonging to different families. Here, we aimed to investigate inflammatory response to combined stimulation of cytosolic nucleotide-binding oligomerization domain (NOD) receptors: NOD1, NOD2 and membrane-bound C-type lectin receptors (CLRs): Mincle and Dectin-1 in comparison to individual stimulation both in vitro and in vivo. MATERIALS AND METHODS: For in vitro studies, we used human monocytic THP-1 cells endogenously expressing NOD1,2, as well as Mincle and Dectin-1 receptors. Using reporter gene and immunoassay approaches, we measured activity of key proinflammatory transcription factors (NF-κB and AP-1) and cytokine production after addition of specific PRR agonists or their pairwise combinations. In vivo NF-κB activity (bioluminescent detection in NF-κB-Luc transgenic mice), as well as cytokine levels in mouse blood serum, was measured 3 hours after intramuscular injection of PRR agonists. RESULTS: We detected that combined stimulation of NOD1/2 and C-type lectin receptors (Dectin-1, Mincle) strongly potentiates NF-κB and AP-1 transcription factor activity in human monocytic THP-1 cells, as well as resulting in enhanced levels of IL-8 cytokine production. We demonstrated that RIP2- and Syk-dependent signaling pathways downstream of NOD1/2 and Dectin-1/Mincle, respectively, are essential for the potentiated proinflammatory cell response. Lastly, we confirmed that synergy between NOD and C-type lectin receptors resulting in potentiated levels of NF-κB activation and cytokine (IL-6, KC) production also occurs in vivo. CONCLUSION: These findings originally indicate cooperation between NODs and CLRs, leading to potentiated levels of proinflammatory immune response both in vitro and in vivo.

3.
J Interferon Cytokine Res ; 33(9): 514-22, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23581877

RESUMO

The mechanisms underlying the complex and multistage wound-healing process are not yet completely understood. One of the most important and intriguing questions remaining is the effect of the interactions between wounds and the microflora that are present in wounds. In this report, we describe the first study of the effect of treating murine skin wounds with topical bacterial lipopolysaccharide (LPS), the main exogenous ligand of Toll-like receptor 4. Our findings demonstrate that LPS treatment strongly affects the wound-healing process by accelerating the resolution of inflammation, increasing macrophage infiltration, enhancing collagen synthesis, and altering the secretion of a number of mediators that are involved in the skin regeneration process. Topical LPS treatment upregulated the secretion of proinflammatory cytokines [interleukin (IL)-6, IL-1ß, and leukemia inhibitory factor (LIF)] and CC-chemokines (CCL2/MCP-1, CCL7/MCP-3, CCL3/MIP-1α, and CCL5/RANTES), but not CXC-chemokines (CXCL2/MIP-2 and CXCL9/MIG). The secretion of growth factors (vascular endothelial growth factor, transforming growth factor-ß1 (TGF-ß1), and fibroblast growth factor 2) at the wound site was also upregulated. Taken together, these results suggest that the topical application of LPS at the wound surface affects the inflammatory process and promotes the wound healing of injured skin.


Assuntos
Inflamação/imunologia , Inflamação/metabolismo , Lipopolissacarídeos/administração & dosagem , Cicatrização/efeitos dos fármacos , Cicatrização/imunologia , Administração Tópica , Animais , Colágeno/biossíntese , Citocinas/biossíntese , Relação Dose-Resposta a Droga , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Masculino , Camundongos , Pele/imunologia , Pele/metabolismo , Pele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA