Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Cell Dev Biol ; 34: 451-469, 2018 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-30028642

RESUMO

Posttranscriptional mechanisms provide powerful means to expand the coding power of genomes. In nervous systems, alternative splicing has emerged as a fundamental mechanism not only for the diversification of protein isoforms but also for the spatiotemporal control of transcripts. Thus, alternative splicing programs play instructive roles in the development of neuronal cell type-specific properties, neuronal growth, self-recognition, synapse specification, and neuronal network function. Here we discuss the most recent genome-wide efforts on mapping RNA codes and RNA-binding proteins for neuronal alternative splicing regulation. We illustrate how alternative splicing shapes key steps of neuronal development, neuronal maturation, and synaptic properties. Finally, we highlight efforts to dissect the spatiotemporal dynamics of alternative splicing and their potential contribution to neuronal plasticity and the mature nervous system.


Assuntos
Processamento Alternativo/genética , Diferenciação Celular/genética , Plasticidade Neuronal/genética , Neurônios/metabolismo , Humanos , Neurogênese/genética , Neurônios/citologia , Isoformas de Proteínas/genética , RNA/genética , Proteínas de Ligação a RNA/genética , Sinapses/genética
2.
Cell ; 164(1-2): 183-196, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26771491

RESUMO

Proper establishment of synapses is critical for constructing functional circuits. Interactions between presynaptic neurexins and postsynaptic neuroligins coordinate the formation of synaptic adhesions. An isoform code determines the direct interactions of neurexins and neuroligins across the synapse. However, whether extracellular linker proteins can expand such a code is unknown. Using a combination of in vitro and in vivo approaches, we found that hevin, an astrocyte-secreted synaptogenic protein, assembles glutamatergic synapses by bridging neurexin-1alpha and neuroligin-1B, two isoforms that do not interact with each other. Bridging of neurexin-1alpha and neuroligin-1B via hevin is critical for the formation and plasticity of thalamocortical connections in the developing visual cortex. These results show that astrocytes promote the formation of synapses by modulating neurexin/neuroligin adhesions through hevin secretion. Our findings also provide an important mechanistic insight into how mutations in these genes may lead to circuit dysfunction in diseases such as autism.


Assuntos
Astrócitos/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Tálamo/metabolismo , Animais , Células COS , Chlorocebus aethiops , Dominância Ocular , Humanos , Camundongos , Camundongos Knockout , Doenças do Sistema Nervoso/metabolismo , Neurônios/metabolismo , Isoformas de Proteínas/metabolismo , Transdução de Sinais , Sinapses/metabolismo
3.
Nature ; 629(8011): 402-409, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632412

RESUMO

Throughout life, neuronal networks in the mammalian neocortex maintain a balance of excitation and inhibition, which is essential for neuronal computation1,2. Deviations from a balanced state have been linked to neurodevelopmental disorders, and severe disruptions result in epilepsy3-5. To maintain balance, neuronal microcircuits composed of excitatory and inhibitory neurons sense alterations in neural activity and adjust neuronal connectivity and function. Here we identify a signalling pathway in the adult mouse neocortex that is activated in response to increased neuronal network activity. Overactivation of excitatory neurons is signalled to the network through an increase in the levels of BMP2, a growth factor that is well known for its role as a morphogen in embryonic development. BMP2 acts on parvalbumin-expressing (PV) interneurons through the transcription factor SMAD1, which controls an array of glutamatergic synapse proteins and components of perineuronal nets. PV-interneuron-specific disruption of BMP2-SMAD1 signalling is accompanied by a loss of glutamatergic innervation in PV cells, underdeveloped perineuronal nets and decreased excitability. Ultimately, this impairment of the functional recruitment of PV interneurons disrupts the cortical excitation-inhibition balance, with mice exhibiting spontaneous epileptic seizures. Our findings suggest that developmental morphogen signalling is repurposed to stabilize cortical networks in the adult mammalian brain.


Assuntos
Proteína Morfogenética Óssea 2 , Interneurônios , Neocórtex , Rede Nervosa , Inibição Neural , Neurônios , Transdução de Sinais , Proteína Smad1 , Animais , Feminino , Humanos , Masculino , Camundongos , Proteína Morfogenética Óssea 2/metabolismo , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Interneurônios/metabolismo , Neocórtex/metabolismo , Neocórtex/citologia , Rede Nervosa/metabolismo , Neurônios/metabolismo , Parvalbuminas/metabolismo , Proteína Smad1/metabolismo , Sinapses/metabolismo , Ácido Glutâmico/metabolismo
4.
EMBO J ; 41(21): e110192, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36149731

RESUMO

The nuclear envelope has long been considered primarily a physical barrier separating nuclear and cytosolic contents. More recently, nuclear compartmentalization has been shown to have additional regulatory functions in controlling gene expression. A sizeable proportion of protein-coding mRNAs is more prevalent in the nucleus than in the cytosol, suggesting regulated mRNA trafficking to the cytosol, but the mechanisms underlying controlled nuclear mRNA retention remain unclear. Here, we provide a comprehensive map of the subcellular localization of mRNAs in mature mouse cortical neurons, and reveal that transcripts retained in the nucleus comprise the majority of stable intron-retaining mRNAs. Systematically probing the fate of nuclear transcripts upon neuronal stimulation, we found opposite effects on sub-populations of transcripts: while some are targeted for degradation, others complete splicing to generate fully mature mRNAs that are exported to the cytosol and mediate rapid increases in protein levels. Finally, different forms of stimulation mobilize distinct groups of intron-retaining transcripts, with this selectivity arising from the activation of specific signaling pathways. Overall, our findings uncover a cue-specific control of intron retention as a major regulator of acute remodeling of the neuronal transcriptome.


Assuntos
Núcleo Celular , Transcriptoma , Animais , Camundongos , Íntrons , Núcleo Celular/metabolismo , RNA Mensageiro/metabolismo , Neurônios/metabolismo
5.
Nat Rev Neurosci ; 22(3): 137-151, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33420412

RESUMO

The function of neuronal circuits relies on the properties of individual neuronal cells and their synapses. We propose that a substantial degree of synapse formation and function is instructed by molecular codes resulting from transcriptional programmes. Recent studies on the Neurexin protein family and its ligands provide fundamental insight into how synapses are assembled and remodelled, how synaptic properties are specified and how single gene mutations associated with neurodevelopmental and psychiatric disorders might modify the operation of neuronal circuits and behaviour. In this Review, we first summarize insights into Neurexin function obtained from various model organisms. We then discuss the mechanisms and logic of the cell type-specific regulation of Neurexin isoforms, in particular at the level of alternative mRNA splicing. Finally, we propose a conceptual framework for how combinations of synaptic protein isoforms act as 'senders' and 'readers' to instruct synapse formation and the acquisition of cell type-specific and synapse-specific functional properties.


Assuntos
Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Sinapses/genética , Sinapses/fisiologia , Processamento Alternativo , Animais , Humanos , Receptores de Superfície Celular
6.
Cell ; 147(7): 1601-14, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22196734

RESUMO

The assembly of synapses and neuronal circuits relies on an array of molecular recognition events and their modification by neuronal activity. Neurexins are a highly polymorphic family of synaptic receptors diversified by extensive alternative splicing. Neurexin variants exhibit distinct isoform-specific biochemical interactions and synapse assembly functions, but the mechanisms governing splice isoform choice are not understood. We demonstrate that Nrxn1 alternative splicing is temporally and spatially controlled in the mouse brain. Neuronal activity triggers a shift in Nrxn1 splice isoform choice via calcium/calmodulin-dependent kinase IV signaling. Activity-dependent alternative splicing of Nrxn1 requires the KH-domain RNA-binding protein SAM68 that associates with RNA response elements in the Nrxn1 pre-mRNA. Our findings uncover SAM68 as a key regulator of dynamic control of Nrxn1 molecular diversity and activity-dependent alternative splicing in the central nervous system.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Processamento Alternativo , Cerebelo/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Sequência de Bases , Proteínas de Ligação ao Cálcio , Cerebelo/citologia , Humanos , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Neurônios/metabolismo , Proteínas de Ligação a RNA/genética , Elementos de Resposta
7.
Nature ; 584(7820): 252-256, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32760004

RESUMO

A fundamental challenge in developing treatments for autism spectrum disorders is the heterogeneity of the condition. More than one hundred genetic mutations confer high risk for autism, with each individual mutation accounting for only a small fraction of cases1-3. Subsets of risk genes can be grouped into functionally related pathways, most prominently those involving synaptic proteins, translational regulation, and chromatin modifications. To attempt to minimize this genetic complexity, recent therapeutic strategies have focused on the neuropeptides oxytocin and vasopressin4-6, which regulate aspects of social behaviour in mammals7. However, it is unclear whether genetic risk factors predispose individuals to autism as a result of modifications to oxytocinergic signalling. Here we report that an autism-associated mutation in the synaptic adhesion molecule Nlgn3 results in impaired oxytocin signalling in dopaminergic neurons and in altered behavioural responses to social novelty tests in mice. Notably, loss of Nlgn3 is accompanied by a disruption of translation homeostasis in the ventral tegmental area. Treatment of Nlgn3-knockout mice with a new, highly specific, brain-penetrant inhibitor of MAP kinase-interacting kinases resets the translation of mRNA and restores oxytocin signalling and social novelty responses. Thus, this work identifies a convergence between the genetic autism risk factor Nlgn3, regulation of translation, and oxytocinergic signalling. Focusing on such common core plasticity elements might provide a pragmatic approach to overcoming the heterogeneity of autism. Ultimately, this would enable mechanism-based stratification of patient populations to increase the success of therapeutic interventions.


Assuntos
Transtorno Autístico/metabolismo , Transtorno Autístico/psicologia , Modelos Animais de Doenças , Ocitocina/metabolismo , Comportamento Social , Animais , Moléculas de Adesão Celular Neuronais/deficiência , Moléculas de Adesão Celular Neuronais/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/efeitos dos fármacos
8.
J Neurosci ; 39(23): 4461-4474, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-30940718

RESUMO

Excitatory synapses onto somatostatin (SOM) interneurons show robust short-term facilitation. This hallmark feature of SOM interneurons arises from a low initial release probability that regulates the recruitment of interneurons in response to trains of action potentials. Previous work has shown that Elfn1 (extracellular leucine rich repeat and fibronectin Type III domain containing 1) is necessary to generate facilitating synapses onto SOM neurons by recruitment of two separate presynaptic components: mGluR7 (metabotropic glutamate receptor 7) and GluK2-KARs (kainate receptors containing glutamate receptor, ionotropic, kainate 2). Here, we identify how a transsynaptic interaction between Elfn1 and mGluR7 constitutively reduces initial release probability onto mouse cortical SOM neurons. Elfn1 produces glutamate-independent activation of mGluR7 via presynaptic clustering, resulting in a divergence from the canonical "autoreceptor" role of Type III mGluRs, and substantially altering synaptic pharmacology. This structurally induced determination of initial release probability is present at both layer 2/3 and layer 5 synapses. In layer 2/3 SOM neurons, synaptic facilitation in response to spike trains is also dependent on presynaptic GluK2-KARs. In contrast, layer 5 SOM neurons do not exhibit presynaptic GluK2-KAR activity at baseline and show reduced facilitation. GluK2-KAR engagement at synapses onto layer 5 SOM neurons can be induced by calmodulin activation, suggesting that synaptic function can be dynamically regulated. Thus, synaptic facilitation onto SOM interneurons is mediated both by constitutive mGluR7 recruitment by Elfn1 and regulated GluK2-KAR recruitment, which determines the extent of interneuron recruitment in different cortical layers.SIGNIFICANCE STATEMENT This study identifies a novel mechanism for generating constitutive GPCR activity through a transsynaptic Elfn1/mGluR7 structural interaction. The resulting tonic suppression of synaptic release probability deviates from canonical autoreceptor function. Constitutive suppression delays the activation of somatostatin interneurons in circuits, necessitating high-frequency activity for somatostatin interneuron recruitment. Furthermore, variations in the synaptic proteome generate layer-specific differences in facilitation at pyr → SOM synapses. The presence of GluK2 kainate receptors in L2/3 enhances synaptic transmission during prolonged activity. Thus, layer-specific synaptic properties onto somatostatin interneurons are mediated by both constitutive mGluR7 recruitment and regulated GluK2 kainate receptor recruitment, revealing a mechanism that generates diversity in physiological responses of interneurons.


Assuntos
Interneurônios/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Receptores de Glutamato Metabotrópico/agonistas , Córtex Somatossensorial/citologia , Somatostatina/análise , Transmissão Sináptica/fisiologia , Regulação Alostérica , Animais , Genes Reporter , Hipocampo/citologia , Interneurônios/química , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Fosfosserina/farmacologia , Propionatos/farmacologia , Receptores de Ácido Caínico/metabolismo , Proteínas Recombinantes/metabolismo , Córtex Somatossensorial/ultraestrutura , Sinapses/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Receptor de GluK2 Cainato
10.
Eur J Neurosci ; 49(11): 1436-1453, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30589479

RESUMO

Alternative splicing is one of the key mechanisms to increase the diversity of cellular transcriptomes, thereby expanding the coding capacity of the genome. This diversity is of particular importance in the nervous system with its elaborated cellular networks. Sam68, a member of the Signal Transduction Associated RNA-binding (STAR) family of RNA-binding proteins, is expressed in the developing and mature nervous system but its neuronal functions are poorly understood. Here, we perform genome-wide mapping of the Sam68-dependent alternative splicing program in mice. We find that Sam68 is required for the regulation of a set of alternative splicing events in pre-mRNAs encoding several postsynaptic scaffolding molecules that are central to the function of GABAergic and glutamatergic synapses. These components include Collybistin (Arhgef9), Gephyrin (Gphn), and Densin-180 (Lrrc7). Sam68-regulated Lrrc7 variants engage in differential protein interactions with signalling proteins, thus, highlighting a contribution of the Sam68 splicing program to shaping synaptic complexes. These findings suggest an important role for Sam68-dependent alternative splicing in the regulation of synapses in the central nervous system.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Processamento Alternativo , Hipocampo/metabolismo , Neurônios/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sinapses/metabolismo , Animais , Proteínas de Membrana/metabolismo , Camundongos , Splicing de RNA , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Sialoglicoproteínas/metabolismo
11.
J Neurosci ; 37(49): 11993-12005, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29118110

RESUMO

The gene patched domain containing 1 (PTCHD1) is mutated in patients with autism spectrum disorders and intellectual disabilities and has been hypothesized to contribute to Sonic hedgehog (Shh) signaling and synapse formation. We identify a panel of Ptchd1-interacting proteins that include postsynaptic density proteins and the retromer complex, revealing a link to critical regulators of dendritic and postsynaptic trafficking. Ptchd1 knock-out (KO) male mice exhibit cognitive alterations, including defects in a novel object recognition task. To test whether Ptchd1 is required for Shh-dependent signaling, we examined two Shh-dependent cell populations that express high levels of Ptchd1 mRNA: cerebellar granule cell precursors and dentate granule cells in the hippocampus. We found that proliferation of these neuronal precursors was not altered significantly in Ptchd1 KO male mice. We used whole-cell electrophysiology and anatomical methods to assess synaptic function in Ptchd1-deficient dentate granule cells. In the absence of Ptchd1, we observed profound disruption in excitatory/inhibitory balance despite normal dendritic spine density on dentate granule cells. These findings support a critical role of the Ptchd1 protein in the dentate gyrus, but indicate that it is not required for structural synapse formation in dentate granule cells or for Shh-dependent neuronal precursor proliferation.SIGNIFICANCE STATEMENT The mechanisms underlying neuronal and cellular alterations resulting from patched domain containing 1 (Ptchd1) gene mutations are unknown. The results from this study support an association with dendritic trafficking complexes of Ptchd1. Loss-of-function experiments do not support a role in sonic hedgehog-dependent signaling, but reveal a disruption of synaptic transmission in the mouse dentate gyrus. The findings will help to guide ongoing efforts to understand the etiology of neurodevelopmental disorders arising from Ptchd1 deficiency.


Assuntos
Transtorno Autístico/metabolismo , Dendritos/metabolismo , Giro Denteado/metabolismo , Proteínas de Membrana/deficiência , Neurogênese/fisiologia , Animais , Transtorno Autístico/genética , Transtorno Autístico/patologia , Dendritos/patologia , Giro Denteado/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transporte Proteico/fisiologia , Fatores de Risco
12.
Annu Rev Neurosci ; 33: 473-507, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20367446

RESUMO

The assembly of specific synaptic connections during development of the nervous system represents a remarkable example of cellular recognition and differentiation. Neurons employ several different cellular signaling strategies to solve this puzzle, which successively limit unwanted interactions and reduce the number of direct recognition events that are required to result in a specific connectivity pattern. Specificity mechanisms include the action of contact-mediated and long-range signals that support or inhibit synapse formation, which can take place directly between synaptic partners or with transient partners and transient cell populations. The molecular signals that drive the synaptic differentiation process at individual synapses in the central nervous system are similarly diverse and act through multiple, parallel differentiation pathways. This molecular complexity balances the need for central circuits to be assembled with high accuracy during development while retaining plasticity for local and dynamic regulation.


Assuntos
Vias Neurais/citologia , Vias Neurais/fisiologia , Neurogênese/genética , Transmissão Sináptica/genética , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Humanos , Modelos Animais , Vias Neurais/embriologia , Neurogênese/fisiologia , Transmissão Sináptica/fisiologia
13.
EMBO Rep ; 16(4): 500-11, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25724380

RESUMO

MicroRNAs (miRNAs) regulate target mRNAs by silencing them. Reciprocally, however, target mRNAs can also modulate miRNA stability. Here, we uncover a remarkable efficacy of target RNA-directed miRNA degradation (TDMD) in rodent primary neurons. Coincident with degradation, and while still bound to Argonaute, targeted miRNAs are 3' terminally tailed and trimmed. Absolute quantification of both miRNAs and their decay-inducing targets suggests that neuronal TDMD is multiple turnover and does not involve co-degradation of the target but rather competes with miRNA-mediated decay of the target. Moreover, mRNA silencing, but not TDMD, relies on cooperativity among multiple target sites to reach high efficacy. This knowledge can be harnessed for effective depletion of abundant miRNAs. Our findings bring insight into a potent miRNA degradation pathway in primary neurons, whose TDMD activity greatly surpasses that of non-neuronal cells and established cell lines. Thus, TDMD may be particularly relevant for miRNA regulation in the nervous system.


Assuntos
Proteínas Argonautas/metabolismo , Cerebelo/metabolismo , Hipocampo/metabolismo , MicroRNAs/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Animais , Proteínas Argonautas/genética , Pareamento de Bases , Sequência de Bases , Cerebelo/citologia , Regulação da Expressão Gênica , Vetores Genéticos , Hipocampo/citologia , Lentivirus/genética , Camundongos , MicroRNAs/genética , Dados de Sequência Molecular , Neurônios/citologia , Cultura Primária de Células , Estabilidade de RNA , RNA Mensageiro/genética , Ratos , Transdução de Sinais
14.
Proc Natl Acad Sci U S A ; 110(2): 725-30, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23269831

RESUMO

Despite the pivotal functions of the NMDA receptor (NMDAR) for neural circuit development and synaptic plasticity, the molecular mechanisms underlying the dynamics of NMDAR trafficking are poorly understood. The cell adhesion molecule neuroligin-1 (NL1) modifies NMDAR-dependent synaptic transmission and synaptic plasticity, but it is unclear whether NL1 controls synaptic accumulation or function of the receptors. Here, we provide evidence that NL1 regulates the abundance of NMDARs at postsynaptic sites. This function relies on extracellular, NL1 isoform-specific sequences that facilitate biochemical interactions between NL1 and the NMDAR GluN1 subunit. Our work uncovers NL1 isoform-specific cis-interactions with ionotropic glutamate receptors as a key mechanism for controlling synaptic properties.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Plasticidade Neuronal/fisiologia , Receptores Ionotrópicos de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Análise de Variância , Animais , Western Blotting , Maleato de Dizocilpina , Imunoprecipitação , Microscopia Confocal , Microscopia Imunoeletrônica , Ratos , Estatísticas não Paramétricas
15.
J Neurosci ; 34(50): 16755-61, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25505328

RESUMO

The unique physiological and morphological properties of neuronal populations are crucial for the appropriate functioning of neuronal circuits. Alternative splicing represents an attractive mechanism for generating cell type-specific molecular repertoires that steer neuronal development and function. However, the mechanisms that link neuronal identity to alternative splicing programs are poorly understood. We report that cell type-specific, mutually exclusive expression of two alternative splicing regulators, SLM1 and SLM2, in the mouse hippocampus is achieved by a cross-repression mechanism. Deletion of SLM2 in vivo modifies alternative splicing of its paralog Slm1 and stabilizes its mRNA, resulting in expression of SLM1 in previously SLM2-expressing cells. Despite this ectopic upregulation of SLM1, loss of SLM2 severely disrupts the alternative splicing regulation of Nrxn1, Nrxn2, and Nrxn3, highlighting that the two SLM paralogs have partially divergent functions. Our study uncovers a hierarchical, SLM2-dependent mechanism for establishing cell type-specific expression of neuronal splicing regulators in vivo.


Assuntos
Processamento Alternativo/fisiologia , Neurônios/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido/fisiologia , Proteínas de Ligação a RNA/biossíntese , Animais , Feminino , Regulação da Expressão Gênica , Células HEK293 , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout
16.
PLoS Biol ; 10(12): e1001439, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23226105

RESUMO

Local mRNA translation in neurons has been mostly studied during axon guidance and synapse formation but not during initial neurite outgrowth. We performed a genome-wide screen for neurite-enriched mRNAs and identified an mRNA that encodes mitogen-activated protein kinase kinase 7 (MKK7), a MAP kinase kinase (MAPKK) for Jun kinase (JNK). We show that MKK7 mRNA localizes to the growth cone where it has the potential to be translated. MKK7 is then specifically phosphorylated in the neurite shaft, where it is part of a MAP kinase signaling module consisting of dual leucine zipper kinase (DLK), MKK7, and JNK1. This triggers Map1b phosphorylation to regulate microtubule bundling leading to neurite elongation. We propose a model in which MKK7 mRNA localization and translation in the growth cone allows for a mechanism to position JNK signaling in the neurite shaft and to specifically link it to regulation of microtubule bundling. At the same time, this uncouples activated JNK from its functions relevant to nuclear translocation and transcriptional activation.


Assuntos
Cones de Crescimento/enzimologia , MAP Quinase Quinase 7/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Neuritos/metabolismo , Transporte de RNA , Regiões 3' não Traduzidas/genética , Animais , Sequência de Bases , Diferenciação Celular , Linhagem Celular , Genoma/genética , Hipocampo/citologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Modelos Biológicos , Neuritos/enzimologia , Fosforilação , Fosfotreonina/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Fatores de Tempo
17.
PLoS Biol ; 9(2): e1001013, 2011 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-21346800

RESUMO

The function of neuronal networks relies on selective assembly of synaptic connections during development. We examined how synaptic specificity emerges in the pontocerebellar projection. Analysis of axon-target interactions with correlated light-electron microscopy revealed that developing pontine mossy fibers elaborate extensive cell-cell contacts and synaptic connections with Purkinje cells, an inappropriate target. Subsequently, mossy fiber-Purkinje cell connections are eliminated resulting in granule cell-specific mossy fiber connectivity as observed in mature cerebellar circuits. Formation of mossy fiber-Purkinje cell contacts is negatively regulated by Purkinje cell-derived BMP4. BMP4 limits mossy fiber growth in vitro and Purkinje cell-specific ablation of BMP4 in mice results in exuberant mossy fiber-Purkinje cell interactions. These findings demonstrate that synaptic specificity in the pontocerebellar projection is achieved through a stepwise mechanism that entails transient innervation of Purkinje cells, followed by synapse elimination. Moreover, this work establishes BMP4 as a retrograde signal that regulates the axon-target interactions during development.


Assuntos
Axônios/fisiologia , Comunicação Celular/fisiologia , Rede Nervosa/fisiologia , Animais , Axônios/ultraestrutura , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Proteína Morfogenética Óssea 4/fisiologia , Cerebelo/embriologia , Cerebelo/fisiologia , Cerebelo/ultraestrutura , Camundongos , Rede Nervosa/embriologia , Células de Purkinje/fisiologia , Células de Purkinje/ultraestrutura , Transmissão Sináptica/fisiologia
19.
Cell Rep ; 42(3): 112173, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36862556

RESUMO

The specification of synaptic properties is fundamental for the function of neuronal circuits. "Terminal selector" transcription factors coordinate terminal gene batteries that specify cell-type-specific properties. Moreover, pan-neuronal splicing regulators have been implicated in directing neuronal differentiation. However, the cellular logic of how splicing regulators instruct specific synaptic properties remains poorly understood. Here, we combine genome-wide mapping of mRNA targets and cell-type-specific loss-of-function studies to uncover the contribution of the RNA-binding protein SLM2 to hippocampal synapse specification. Focusing on pyramidal cells and somatostatin (SST)-positive GABAergic interneurons, we find that SLM2 preferentially binds and regulates alternative splicing of transcripts encoding synaptic proteins. In the absence of SLM2, neuronal populations exhibit normal intrinsic properties, but there are non-cell-autonomous synaptic phenotypes and associated defects in a hippocampus-dependent memory task. Thus, alternative splicing provides a critical layer of gene regulation that instructs specification of neuronal connectivity in a trans-synaptic manner.


Assuntos
Processamento Alternativo , Neurônios , Processamento Alternativo/genética , Neurônios/metabolismo , Sinapses/metabolismo , Células Piramidais , Interneurônios , Hipocampo/metabolismo
20.
Dis Model Mech ; 16(3)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36810932

RESUMO

Gonadotropin-releasing hormone (GnRH) deficiency (GD) is a disorder characterized by absent or delayed puberty, with largely unknown genetic causes. The purpose of this study was to obtain and exploit gene expression profiles of GnRH neurons during development to unveil novel biological mechanisms and genetic determinants underlying GD. Here, we combined bioinformatic analyses of immortalized and primary embryonic GnRH neuron transcriptomes with exome sequencing from GD patients to identify candidate genes implicated in the pathogenesis of GD. Among differentially expressed and filtered transcripts, we found loss-of-function (LoF) variants of the autism-linked neuroligin 3 (NLGN3) gene in two unrelated patients co-presenting with GD and neurodevelopmental traits. We demonstrated that NLGN3 is upregulated in maturing GnRH neurons and that NLGN3 wild-type, but not mutant, protein promotes neuritogenesis when overexpressed in developing GnRH cells. Our data represent proof of principle that this complementary approach can identify new candidate GD genes and demonstrate that LoF NLGN3 variants can contribute to GD. This novel genotype-phenotype correlation implies common genetic mechanisms underlying neurodevelopmental disorders, such as GD and autistic spectrum disorder.


Assuntos
Transtorno Autístico , Humanos , Transtorno Autístico/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA