Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Cell ; 150(5): 1016-28, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22939625

RESUMO

Morphogen gradients pattern tissues and organs during development. When morphogen production is spatially restricted, diffusion and degradation are sufficient to generate sharp concentration gradients. It is less clear how sharp gradients can arise within the source of a broadly expressed morphogen. A recent solution relies on localized production of an inhibitor outside the domain of morphogen production, which effectively redistributes (shuttles) and concentrates the morphogen within its expression domain. Here, we study how a sharp gradient is established without a localized inhibitor, focusing on early dorsoventral patterning of the Drosophila embryo, where an active ligand and its inhibitor are concomitantly generated in a broad ventral domain. Using theory and experiments, we show that a sharp Toll activation gradient is produced through "self-organized shuttling," which dynamically relocalizes inhibitor production to lateral regions, followed by inhibitor-dependent ventral shuttling of the activating ligand Spätzle. Shuttling may represent a general paradigm for patterning early embryos.


Assuntos
Drosophila/embriologia , Drosophila/metabolismo , Embrião não Mamífero/metabolismo , Animais , Padronização Corporal , Proteínas de Drosophila , Mesoderma , Sulfotransferases
2.
J Cell Sci ; 137(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38899547

RESUMO

The Rho family of GTPases plays a crucial role in cellular mechanics by regulating actomyosin contractility through the parallel induction of actin and myosin assembly and function. Using exocytosis of large vesicles in the Drosophila larval salivary gland as a model, we followed the spatiotemporal regulation of Rho1, which in turn creates distinct organization patterns of actin and myosin. After vesicle fusion, low levels of activated Rho1 reach the vesicle membrane and drive actin nucleation in an uneven, spread-out pattern. Subsequently, the Rho1 activator RhoGEF2 distributes as an irregular meshwork on the vesicle membrane, activating Rho1 in a corresponding punctate pattern and driving local myosin II recruitment, resulting in vesicle constriction. Vesicle membrane buckling and subsequent crumpling occur at local sites of high myosin II concentrations. These findings indicate that distinct thresholds for activated Rho1 create a biphasic mode of actomyosin assembly, inducing anisotropic membrane crumpling during exocrine secretion.


Assuntos
Proteínas de Drosophila , Exocitose , Miosina Tipo II , Proteínas rho de Ligação ao GTP , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Miosina Tipo II/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/genética , Exocitose/fisiologia , Drosophila melanogaster/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Larva/metabolismo , Glândulas Salivares/metabolismo , Glândulas Salivares/citologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Vesículas Secretórias/metabolismo
3.
Development ; 148(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34918740

RESUMO

Morphogen gradients are known to subdivide a naive cell field into distinct zones of gene expression. Here, we examine whether morphogens can also induce a graded response within such domains. To this end, we explore the role of the Dorsal protein nuclear gradient along the dorsoventral axis in defining the graded pattern of actomyosin constriction that initiates gastrulation in early Drosophila embryos. Two complementary mechanisms for graded accumulation of mRNAs of crucial zygotic Dorsal target genes were identified. First, activation of target-gene expression expands over time from the ventral-most region of high nuclear Dorsal to lateral regions, where the levels are lower, as a result of a Dorsal-dependent activation probability of transcription sites. Thus, sites that are activated earlier will exhibit more mRNA accumulation. Second, once the sites are activated, the rate of RNA Polymerase II loading is also dependent on Dorsal levels. Morphological restrictions require that translation of the graded mRNA be delayed until completion of embryonic cell formation. Such timing is achieved by large introns, which provide a delay in production of the mature mRNAs. Spatio-temporal regulation of key zygotic genes therefore shapes the pattern of gastrulation.


Assuntos
Proteínas de Drosophila/genética , Desenvolvimento Embrionário/genética , Morfogênese/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , RNA Mensageiro/genética , Fatores de Transcrição/genética , Animais , Padronização Corporal/genética , Núcleo Celular/genética , Drosophila melanogaster/genética , Embrião não Mamífero , Gastrulação/genética , Regulação da Expressão Gênica no Desenvolvimento , Íntrons/genética , RNA Polimerase II/genética
4.
Proc Natl Acad Sci U S A ; 117(3): 1552-1558, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31900360

RESUMO

Buffering variability in morphogen distribution is essential for reproducible patterning. A theoretically proposed class of mechanisms, termed "distal pinning," achieves robustness by combining local sensing of morphogen levels with global modulation of gradient spread. Here, we demonstrate a critical role for morphogen sensing by a gene enhancer, which ultimately determines the final global distribution of the morphogen and enables reproducible patterning. Specifically, we show that, while the pattern of Toll activation in the early Drosophila embryo is robust to gene dosage of its locally produced regulator, WntD, it is sensitive to a single-nucleotide change in the wntD enhancer. Thus, enhancer properties of locally produced WntD directly impinge on the global morphogen profile.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Drosophila/genética , Drosophila/metabolismo , Elementos Facilitadores Genéticos/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Sítios de Ligação , Padronização Corporal , Proteínas de Drosophila/genética , Desenvolvimento Embrionário/genética , Gástrula/fisiologia , Dosagem de Genes , Regulação da Expressão Gênica no Desenvolvimento , Proteínas HMGB/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Morfogênese/genética , Morfogênese/fisiologia , Proteínas Repressoras/metabolismo , Alinhamento de Sequência , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
5.
Development ; 146(21)2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31719046

RESUMO

Establishment of morphogen gradients in the early Drosophila embryo is challenged by a diffusible sextracellular milieu, and by rapid nuclear divisions that occur at the same time. To understand how a sharp gradient is formed within this dynamic environment, we followed the generation of graded nuclear Dorsal protein, the hallmark of pattern formation along the dorso-ventral axis, in live embryos. The dynamics indicate that a sharp extracellular gradient is formed through diffusion-based shuttling of the Spaetzle (Spz) morphogen that progresses through several nuclear divisions. Perturbed shuttling in wntD mutant embryos results in a flat activation peak and aberrant gastrulation. Re-entry of Dorsal into the nuclei at the final division cycle plays an instructive role, as the residence time of Dorsal in each nucleus is translated to the amount of zygotic transcript that will be produced, thereby guiding graded accumulation of specific zygotic transcripts that drive patterned gastrulation. We conclude that diffusion-based ligand shuttling, coupled with dynamic readout, establishes a refined pattern within the diffusible environment of early embryos.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/embriologia , Gástrula/metabolismo , Gastrulação , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese , Animais , Padronização Corporal , Núcleo Celular/fisiologia , Proteínas de Drosophila/genética , Embrião não Mamífero/fisiologia , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Mutação , Proteínas Nucleares/fisiologia , Fosfoproteínas/fisiologia , Transdução de Sinais , Fatores de Transcrição/fisiologia
6.
Dev Dyn ; 250(1): 60-73, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32725855

RESUMO

BACKGROUND: Muscle myofibrils and sarcomeres present exceptional examples of highly ordered cytoskeletal filament arrays, whose distinct spatial organization is an essential aspect of muscle cell functionality. We utilized ultra-structural analysis to investigate the assembly of myofibrils and sarcomeres within developing myotubes of the indirect flight musculature of Drosophila. RESULTS: A temporal sequence composed of three major processes was identified: subdivision of the unorganized cytoplasm of nascent, multi-nucleated myotubes into distinct organelle-rich and filament-rich domains; initial organization of the filament-rich domains into myofibrils harboring nascent sarcomeric units; and finally, maturation of the highly-ordered pattern of sarcomeric thick (myosin-based) and thin (microfilament-based) filament arrays in parallel to myofibril radial growth. Significantly, organized microtubule arrays were present throughout these stages and exhibited dynamic changes in their spatial patterns consistent with instructive roles. Genetic manipulations confirm these notions, and imply specific and critical guidance activities of the microtubule-based cytoskeleton, as well as structural interdependence between the myosin- and actin-based filament arrays. CONCLUSIONS: Our observations highlight a surprisingly significant, behind-the-scenes role for microtubules in establishment of myofibril and sarcomere spatial patterns and size, and provide a detailed account of the interplay between major cytoskeletal elements in generating these essential contractile myogenic units.


Assuntos
Citoesqueleto/metabolismo , Drosophila/crescimento & desenvolvimento , Desenvolvimento Muscular , Pupa/ultraestrutura , Sarcômeros/metabolismo , Animais , Drosophila/ultraestrutura
7.
Semin Cell Dev Biol ; 60: 112-120, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27423913

RESUMO

Fusion of myoblasts gives rise to the large, multi-nucleated muscle fibers that power and support organism motion and form. The mechanisms underlying this prominent form of cell-cell fusion have been investigated by a variety of experimental approaches, in several model systems. The purpose of this review is to describe and discuss recent progress in the field, as well as point out issues currently unresolved and worthy of further investigation. Following a description of several new experimental settings employed in the study of myoblast fusion, a series of topics relevant to the current understanding of the process are presented. These pertain to elements of three major cellular machineries- cell-adhesion, the actin-based cytoskeleton and membrane-associated elements- all of which play key roles in mediating myoblast fusion. Among the issues raised are the diversity of functions ascribed to different adhesion proteins (e.g. external cell apposition and internal recruitment of cytoskeleton regulators); functional significance of fusion-associated actin structures; and discussion of alternative mechanisms employing single or multiple fusion pore formation as the basis for muscle cell fusion.


Assuntos
Mioblastos/citologia , Actinas/metabolismo , Animais , Fusão Celular , Membrana Celular/metabolismo , Citoesqueleto/metabolismo
8.
PLoS Genet ; 10(6): e1004447, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24967734

RESUMO

During spermatogenesis, the blood-testis barrier (BTB) segregates the adluminal (apical) and basal compartments in the seminiferous epithelium, thereby creating a privileged adluminal environment that allows post-meiotic spermatid development to proceed without interference of the host immune system. A key feature of the BTB is its continuous remodeling within the Sertoli cells, the major somatic component of the seminiferous epithelium. This remodeling is necessary to allow the transport of germ cells towards the seminiferous tubule interior, while maintaining intact barrier properties. Here we demonstrate that the actin nucleation promoting factor Neuronal Wiskott-Aldrich Syndrome Protein (N-WASP) provides an essential function necessary for BTB restructuring, and for maintaining spermatogenesis. Our data suggests that the N-WASP-Arp2/3 actin polymerization machinery generates branched-actin arrays at an advanced stage of BTB remodeling. These arrays are proposed to mediate the restructuring process through endocytic recycling of BTB components. Disruption of N-WASP in Sertoli cells results in major structural abnormalities to the BTB, including mis-localization of critical junctional and cytoskeletal elements, and leads to disruption of barrier function. These impairments result in a complete arrest of spermatogenesis, underscoring the critical involvement of the somatic compartment of the seminiferous tubules in germ cell maturation.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Barreira Hematotesticular , Espermatogênese/genética , Proteína Neuronal da Síndrome de Wiskott-Aldrich/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Masculino , Camundongos , Epitélio Seminífero/metabolismo , Células de Sertoli/metabolismo , Espermátides/metabolismo , Espermatócitos/crescimento & desenvolvimento , Espermatócitos/metabolismo , Testículo/metabolismo
9.
Trends Genet ; 29(6): 339-47, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23369355

RESUMO

Morphogen gradients are used to pattern a field of cells according to variations in the concentration of a signaling molecule. Typically, the morphogen emanates from a confined group of cells. During early embryogenesis, however, the ability to define a restricted source for morphogen production is limited. Thus, various early patterning systems rely on a broadly expressed morphogen that generates an activation gradient within its expression domain. Computational and experimental work has shed light on how a sharp and robust gradient can be established under those situations, leading to a mechanism termed 'morphogen shuttling'. This mechanism relies on an extracellular shuttling molecule that forms an inert, highly diffusible complex with the morphogen. Morphogen release from the complex following cleavage of the shuttling molecule by an extracellular protease leads to the accumulation of free ligand at the center of its expression domain and a graded activation of the developmental pathway that decreases significantly even within the morphogen-expression domain.


Assuntos
Morfogênese/genética , Transdução de Sinais , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Drosophila , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Morfogênese/fisiologia
10.
Development ; 140(13): 2746-54, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23757412

RESUMO

How signal transduction, which is dynamic and fluctuating by nature, is converted into a stable trancriptional response, is an unanswered question in developmental biology. Two ETS-domain transcription factors encoded by the pointed (pnt) locus, PntP1 and PntP2, are universal downstream mediators of EGFR-based signaling in Drosophila. Full disruption of pnt function in developing eye imaginal discs reveals a photoreceptor recruitment phenotype, in which only the R8 photoreceptor cell type is specified within ommatidia. Specific disruption of either pntP1 or pntP2 resulted in the same R8-only phenotype, demonstrating that both Pnt isoforms are essential for photoreceptor recruitment. We show that the two Pnt protein forms are activated in a sequential manner within the EGFR signaling pathway: MAPK phosphorylates and activates PntP2, which in turn induces pntP1 transcription. Once expressed, PntP1 is constitutively active and sufficient to induce target genes essential for photoreceptor development. Pulse-chase experiments indicate that PntP1 is stable for several hours in the eye disc. Sequential ETS-protein recruitment therefore allows sustained induction of target genes, beyond the transient activation of EGFR.


Assuntos
Proteínas de Drosophila/metabolismo , Receptores ErbB/metabolismo , Transdução de Sinais/fisiologia , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila , Proteínas de Drosophila/genética , Receptores ErbB/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Proc Natl Acad Sci U S A ; 110(26): 10652-7, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23754409

RESUMO

The final stage in exocrine secretion involves translocation of vesicles from their storage areas to the apical membrane. We show that actin-coated secretory vesicles of the exocrine pancreas travel this distance over bundles of specialized actin cables emanating from the apical plasma membrane. These bundles are stable structures that require constant G-actin incorporation and are distinct from the actin web that surrounds the exocrine lumen. The murine mammalian Diaphanous-related formin 1 (mDia1) was identified as a generator of these cables. The active form of mDia1 localized to the apical membrane, and introduction of an active form of mDia1 led to a marked increase in bundle density along the lumen perimeter. Compromising formation of the cables does not prevent secretion, but results in disorganized trafficking and fusion between secretory vesicles. Similar apical secretory tracks were also found in the submandibular salivary glands. Together with previous results that identified a role for Diaphanous in apical secretion in tubular organs of Drosophila, the role of Diaphanous formins at the final stages of secretion appears to be highly conserved.


Assuntos
Actinas/fisiologia , Proteínas de Transporte/fisiologia , Pâncreas Exócrino/fisiologia , Vesículas Secretórias/fisiologia , Células Acinares/fisiologia , Citoesqueleto de Actina/fisiologia , Animais , Células Cultivadas , Forminas , Camundongos , Modelos Biológicos , Pâncreas Exócrino/citologia , Glândula Submandibular/citologia , Glândula Submandibular/fisiologia
12.
EMBO J ; 30(17): 3516-26, 2011 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-21878993

RESUMO

Universal trafficking components within the cell can be recruited to coordinate and regulate the developmental signalling cascades. We will present ways in which the intracellular trafficking machinery is used to affect and modulate the outcome of signal transduction in developmental contexts, thus regulating multicellular development. Each of the signalling components must reach its proper intracellular destination, in a form that is properly folded and modified. In many instances, the ability to bring components together or segregate them into distinct compartments within the cell actually provides the switch mechanism to turn developmental signalling pathways on or off. The review will begin with a focus on the signal-sending cells, and the ways in which ligand trafficking can impinge on the signalling outcome, via processing, endocytosis and recycling. We will then turn to the signal-receiving cell, and discuss mechanisms by which endocytosis can affect the spatial features of the signal, and the compartmentalization of components downstream to the receptor.


Assuntos
Membrana Celular/metabolismo , Endocitose , Transdução de Sinais/fisiologia , Animais , Drosophila/metabolismo , Drosophila/fisiologia , Humanos , Camundongos , Processamento de Proteína Pós-Traducional/fisiologia , Transporte Proteico , Receptores Notch/metabolismo
13.
Development ; 139(21): 4040-50, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23048185

RESUMO

A major aspect of indirect flight muscle formation during adult Drosophila myogenesis involves transition of a semi-differentiated and proliferating pool of myoblasts to a mature myoblast population, capable of fusing with nascent myotubes and generating mature muscle fibers. Here we examine the molecular genetic programs underlying these two phases of myoblast differentiation. We show that the cell adhesion proteins Dumbfounded (Duf) and Sticks and stones (Sns), together with their paralogs Roughest (Rst) and Hibris (Hbs), respectively, are required for adhesion of migrating myoblasts to myotubes and initiation of myoblast-myotube fusion. As myoblasts approach their myotube targets, they are maintained in a semi-differentiated state by continuous Notch activation, where each myoblast provides the ligand Delta to its neighbors. This unique form of bidirectional Notch activation is achieved by finely tuning the levels of the ligand and receptor. Activation of Notch signaling in myoblasts represses expression of key fusion elements such as Sns. Only upon reaching the vicinity of the myotubes does Notch signaling decay, leading to terminal differentiation of the myoblasts. The ensuing induction of proteins required for fusion enables myoblasts to fuse with the myotubes and give rise to subsequent muscle fiber growth.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/citologia , Drosophila/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Receptores Notch/metabolismo , Animais , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Receptores Notch/genética
14.
Proc Natl Acad Sci U S A ; 109(28): 11211-6, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22736793

RESUMO

A fundamental aspect of skeletal myogenesis involves extensive rounds of cell fusion, in which individual myoblasts are incorporated into growing muscle fibers. Here we demonstrate that N-WASp, a ubiquitous nucleation-promoting factor of branched microfilament arrays, is an essential contributor to skeletal muscle-cell fusion in developing mouse embryos. Analysis both in vivo and in primary satellite-cell cultures, shows that disruption of N-WASp function does not interfere with the program of skeletal myogenic differentiation, and does not affect myoblast motility, morphogenesis and attachment capacity. N-WASp-deficient myoblasts, however, fail to fuse. Furthermore, our analysis suggests that myoblast fusion requires N-WASp activity in both partners of a fusing myoblast pair. These findings reveal a specific role for N-WASp during mammalian myogenesis. WASp-family elements appear therefore to act as universal mediators of the myogenic cell-cell fusion mechanism underlying formation of functional muscle fibers, in both vertebrate and invertebrate species.


Assuntos
Actinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Músculos/citologia , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Animais , Diferenciação Celular , Fusão Celular , Células Cultivadas , Cruzamentos Genéticos , Drosophila , Heterozigoto , Camundongos , Camundongos Endogâmicos ICR , Modelos Biológicos , Desenvolvimento Muscular , Músculos/embriologia , Fatores de Tempo
15.
Development ; 138(11): 2347-57, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21558381

RESUMO

Myoblast fusion provides a fundamental, conserved mechanism for muscle fiber growth. We demonstrate here that the functional contribution of Wsp, the Drosophila homolog of the conserved actin nucleation-promoting factor (NPF) WASp, is essential for myoblast fusion during the formation of muscles of the adult fly. Disruption of Wsp function results in complete arrest of myoblast fusion in all muscles examined. Wsp activity during adult Drosophila myogenesis is specifically required for muscle cell fusion and is crucial both for the formation of new muscle fibers and for the growth of muscles derived from persistent larval templates. Although Wsp is expressed both in fibers and individual myoblasts, its activity in either one of these cell types is sufficient. SCAR, a second major Arp2/3 NPF, is also required during adult myoblast fusion. Formation of fusion-associated actin 'foci' is dependent on Arp2/3 complex function, but appears to rely on a distinct, unknown nucleator. The comprehensive nature of these requirements identifies Arp2/3-based branched actin polymerization as a universal mechanism underlying myoblast fusion.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/crescimento & desenvolvimento , Desenvolvimento Muscular/fisiologia , Mioblastos/fisiologia , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Animais , Animais Geneticamente Modificados , Fusão Celular , Membrana Celular/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Mutação , Mioblastos/metabolismo , RNA Interferente Pequeno , Proteína da Síndrome de Wiskott-Aldrich/genética
16.
Development ; 138(13): 2729-39, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21652648

RESUMO

WASp family proteins serve as conserved regulators of branched microfilament array formation via the Arp2/3 actin polymerization machinery. We have identified a specific role during spermatogenesis for the Drosophila WASp homolog (Wsp) and associated elements. Spermatogenesis within the fly testis is carried out in cysts, where a pair of somatic cyst cells encloses differentiating sperm. The final phase of the process involves the attachment of matured cysts to a specialized epithelium at the base of the testis, followed by release of individual motile spermatids into the adjoining seminal vesicle. Wsp mutant cysts contain fully mature sperm, but spermatid release does not occur, resulting in male sterility. Our data suggest that the Wsp-Arp2/3-based machinery acts in the cyst cells to influence proper microfilament organization and to enable cyst attachment to the base of the testis. Wsp activity in this context is mediated by the small GTPase Cdc42. Involvement of the cell surface protein Sticks and stones and the Wsp adapter protein D-WIP (Vrp1) is also crucial. In parallel, we demonstrate that N-WASp (Wasl), the major mammalian WASp family protein, is required in the somatic Sertoli cells of the mouse testis for sperm maturation. A requirement for WASp-based activity in somatic support cells therefore appears to be a universal feature of spermatogenesis.


Assuntos
Actinas/metabolismo , Proteínas de Drosophila/metabolismo , Espermátides/citologia , Espermátides/metabolismo , Espermatogênese/fisiologia , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Imunofluorescência , Técnicas In Vitro , Masculino , Microscopia de Fluorescência , Células de Sertoli/citologia , Células de Sertoli/metabolismo , Espermatogênese/genética , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética , Proteína Neuronal da Síndrome de Wiskott-Aldrich/genética , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo
17.
Development ; 137(20): 3427-37, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20826532

RESUMO

Egfr ligand processing in Drosophila involves trafficking of the ligand precursor by the chaperone Star from the endoplasmic reticulum (ER) to a secretory compartment, where the precursor is cleaved by the intramembrane protease Rhomboid. Some of the Drosophila Rhomboids also reside in the ER, where they attenuate signaling by premature cleavage of Star. The genome of the flour beetle Tribolium castaneum contains a single gene for each of the ligand-processing components, providing an opportunity to assess the regulation and impact of a simplified ligand-processing cassette. We find that the central features of ligand retention, trafficking by the chaperone and cleavage by Rhomboid have been conserved. The single Rhomboid is localized to both ER and secretory compartments. However, we show that Tribolium Star is refractive to Rhomboid cleavage. Consequently, this ligand-processing system effectively mediates long-range Egfr activation in the Tribolium embryonic ventral ectoderm, despite ER localization of Rhomboid. Diversification of the Egfr signaling pathway appears to have coupled gene duplication events with modulation of the biochemical properties and subcellular localization patterns of Rhomboid proteases and their substrates.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Retículo Endoplasmático/metabolismo , Receptores ErbB/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais/genética , Tribolium/metabolismo , Animais , Western Blotting , Linhagem Celular , Drosophila/genética , Duplicação Gênica , Imuno-Histoquímica , Hibridização In Situ , Ligantes , Fator de Crescimento Transformador alfa/metabolismo , Tribolium/genética
18.
PLoS Biol ; 8(10)2010 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-20957186

RESUMO

The release of signaling molecules from neurons must be regulated, to accommodate their highly polarized structure. In the developing Drosophila visual system, photoreceptor neurons secrete the epidermal growth factor receptor ligand Spitz (Spi) from their cell bodies, as well as from their axonal termini. Here we show that subcellular localization of Rhomboid proteases, which process Spi, determines the site of Spi release from neurons. Endoplasmic reticulum (ER) localization of Rhomboid 3 is essential for its ability to promote Spi secretion from axons, but not from cell bodies. We demonstrate that the ER extends throughout photoreceptor axons, and show that this feature facilitates the trafficking of the Spi precursor, the ligand chaperone Star, and Rhomboid 3 to axonal termini. Following this trafficking step, secretion from the axons is regulated in a manner similar to secretion from cell bodies. These findings uncover a role for the ER in trafficking proteins from the neuronal cell body to axon terminus.


Assuntos
Polaridade Celular , Drosophila melanogaster , Retículo Endoplasmático/metabolismo , Receptores ErbB/metabolismo , Ligantes , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/ultraestrutura , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Retículo Endoplasmático/ultraestrutura , Endossomos/metabolismo , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/fisiologia
19.
J Cell Biol ; 222(11)2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37707500

RESUMO

Exocrine cells utilize large secretory vesicles (LSVs) up to 10 µm in diameter. LSVs fuse with the apical surface, often recruiting actomyosin to extrude their content through dynamic fusion pores. The molecular mechanism regulating pore dynamics remains largely uncharacterized. We observe that the fusion pores of LSVs in the Drosophila larval salivary glands expand, stabilize, and constrict. Arp2/3 is essential for pore expansion and stabilization, while myosin II is essential for pore constriction. We identify several Bin-Amphiphysin-Rvs (BAR) homology domain proteins that regulate fusion pore expansion and stabilization. We show that the I-BAR protein Missing-in-Metastasis (MIM) localizes to the fusion site and is essential for pore expansion and stabilization. The MIM I-BAR domain is essential but not sufficient for localization and function. We conclude that MIM acts in concert with actin, myosin II, and additional BAR-domain proteins to control fusion pore dynamics, mediating a distinct mode of exocytosis, which facilitates actomyosin-dependent content release that maintains apical membrane homeostasis during secretion.


Assuntos
Actomiosina , Exocitose , Vesículas Secretórias , Animais , Citoesqueleto de Actina , Membrana Celular , Proteínas do Citoesqueleto , Drosophila , Vesículas Secretórias/genética
20.
Dev Biol ; 357(1): 17-20, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21168403

RESUMO

Processing of EGF-family ligands is an essential step in triggering the EGF receptor pathway, which fulfills a diverse set of roles during development and tissue maintenance. We describe a mechanism of ligand processing which is unique to insects, and possibly to other invertebrates. This mechanism relies on ligand precursor trafficking from the ER by a chaperone, Star (S), and precursor cleavage by Rhomboids, a family of intra-membrane protease. Remarkably, the ability of Rhomboids to cleave S as well, endows the pathway with additional diversity. Rhomboid isoforms which also reside in the ER inactivate the chaperone before any ligand was trafficked, thus significantly reducing the level of ligand that will eventually be processed and secreted. ER localization also serves as a critical feature in trafficking the entire ligand-processing machinery to axonal termini, as the ER extends throughout the axon. Finally, examination of diverse species of insects demonstrates the evolution of chaperone cleavability, indicating that the primordial processing machinery could support long-range signaling by the ligand. Altering the intracellular localization of critical components of a conserved signaling cassette therefore provides an evolutionary mechanism for modulation of signaling levels, and diversification of the biological settings where the pathway functions.


Assuntos
Receptores ErbB/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Receptores ErbB/genética , Humanos , Insetos/genética , Insetos/metabolismo , Ligantes , Chaperonas Moleculares/metabolismo , Isoformas de Proteínas/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA