Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neuroeng Rehabil ; 21(1): 70, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702813

RESUMO

Despite its rich history of success in controlling powered prostheses and emerging commercial interests in ubiquitous computing, myoelectric control continues to suffer from a lack of robustness. In particular, EMG-based systems often degrade over prolonged use resulting in tedious recalibration sessions, user frustration, and device abandonment. Unsupervised adaptation is one proposed solution that updates a model's parameters over time based on its own predictions during real-time use to maintain robustness without requiring additional user input or dedicated recalibration. However, these strategies can actually accelerate performance deterioration when they begin to classify (and thus adapt) incorrectly, defeating their own purpose. To overcome these limitations, we propose a novel adaptive learning strategy, Context-Informed Incremental Learning (CIIL), that leverages in situ context to better inform the prediction of pseudo-labels. In this work, we evaluate these CIIL strategies in an online target acquisition task for two use cases: (1) when there is a lack of training data and (2) when a drastic and enduring alteration in the input space has occurred. A total of 32 participants were evaluated across the two experiments. The results show that the CIIL strategies significantly outperform the current state-of-the-art unsupervised high-confidence adaptation and outperform models trained with the conventional screen-guided training approach, even after a 45-degree electrode shift (p < 0.05). Consequently, CIIL has substantial implications for the future of myoelectric control, potentially reducing the training burden while bolstering model robustness, and leading to improved real-time control.


Assuntos
Eletromiografia , Humanos , Masculino , Adulto , Feminino , Adulto Jovem , Aprendizagem/fisiologia , Membros Artificiais , Aprendizado de Máquina , Desempenho Psicomotor/fisiologia
2.
Sensors (Basel) ; 22(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36501983

RESUMO

The monitoring of emotional state is important in the prevention and management of mental health problems and is increasingly being used to support affective computing. As such, researchers are exploring various modalities from which emotion can be inferred, such as through facial images or via electroencephalography (EEG) signals. Current research commonly investigates the performance of machine-learning-based emotion recognition systems by exposing users to stimuli that are assumed to elicit a single unchanging emotional response. Moreover, in order to demonstrate better results, many models are tested in evaluation frameworks that do not reflect realistic real-world implementations. Consequently, in this paper, we explore the design of EEG-based emotion recognition systems using longer, variable stimuli using the publicly available AMIGOS dataset. Feature engineering and selection results are evaluated across four different cross-validation frameworks, including versions of leave-one-movie-out (testing with a known user, but a previously unseen movie), leave-one-person-out (testing with a known movie, but a previously unseen person), and leave-one-person-and-movie-out (testing on both a new user and new movie). Results of feature selection lead to a 13% absolute improvement over comparable previously reported studies, and demonstrate the importance of evaluation framework on the design and performance of EEG-based emotion recognition systems.


Assuntos
Emoções , Reconhecimento Psicológico , Humanos , Eletroencefalografia , Face , Engenharia
3.
Sensors (Basel) ; 20(6)2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32183215

RESUMO

This manuscript presents a hybrid study of a comprehensive review and a systematic(research) analysis. Myoelectric control is the cornerstone ofmany assistive technologies used in clinicalpractice, such as prosthetics and orthoses, and human-computer interaction, such as virtual reality control.Although the classification accuracy of such devices exceeds 90% in a controlled laboratory setting,myoelectric devices still face challenges in robustness to variability of daily living conditions.The intrinsic physiological mechanisms limiting practical implementations of myoelectric deviceswere explored: the limb position effect and the contraction intensity effect. The degradationof electromyography (EMG) pattern recognition in the presence of these factors was demonstratedon six datasets, where classification performance was 13% and 20% lower than the controlledsetting for the limb position and contraction intensity effect, respectively. The experimental designsof limb position and contraction intensity literature were surveyed. Current state-of-the-art trainingstrategies and robust algorithms for both effects were compiled and presented. Recommendationsfor future limb position effect studies include: the collection protocol providing exemplars of at least 6positions (four limb positions and three forearm orientations), three-dimensional space experimentaldesigns, transfer learning approaches, and multi-modal sensor configurations. Recommendationsfor future contraction intensity effect studies include: the collection of dynamic contractions, nonlinearcomplexity features, and proportional control.


Assuntos
Eletromiografia/tendências , Movimento/fisiologia , Músculo Esquelético/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Membros Artificiais , Antebraço/fisiologia , Humanos , Músculo Esquelético/diagnóstico por imagem , Reconhecimento Automatizado de Padrão , Desenho de Prótese , Interface Usuário-Computador
4.
Sensors (Basel) ; 20(3)2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31979224

RESUMO

Due to the increasing rates of chronic diseases and an aging population, the use of assistive devices for ambulation is expected to grow rapidly over the next several years. Instrumenting these devices has been proposed as a non-invasive way to proactively monitor changes in gait due to the presence of pain or a condition in outdoor and indoor environments. In this paper, we evaluated the effectiveness of a multi-sensor cane in detecting changes in gait due to the presence of simulated gait abnormalities, walking terrains, impaired vision, and incorrect cane lengths. The effectiveness of the instrumented cane was compared with the results obtained directly from a shank-mounted inertial measurement unit. Results from 30 healthy participants obtained while simulating gait abnormalities and walking over different terrains demonstrated the ability of the cane to reliably and effectively discriminate among these walking conditions. Moreover, the results obtained while walking with impaired vision and incorrect cane lengths indicate the ability of cane to detect changes in gait during these scenarios as well.


Assuntos
Bengala , Marcha/fisiologia , Transtornos dos Movimentos/fisiopatologia , Caminhada/fisiologia , Adolescente , Adulto , Algoritmos , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Criança , Feminino , Humanos , Masculino , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Adulto Jovem
5.
Sensors (Basel) ; 19(21)2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661761

RESUMO

Many biometric systems based on physiological traits such as ones facial characteristics, iris, and fingerprint have been developed for authentication purposes. Such security systems, however, commonly suffer from impersonation attacks such as obfuscation, abrasion, latent samples, and covert attack. More conventional behavioral methods, such as passwords and signatures, suffer from similar issues and can easily be spoofed. With growing levels of private data readily available across the internet, a more robust authentication system is needed for use in emerging technologies and mobile applications. In this paper, we present a novel multimodal biometric user authentication framework by combining the behavioral dynamic signature with the the physiological electroencephalograph (EEG) to restrict unauthorized access. EEG signals of 33 genuine users were collected while signing on their mobile phones. The recorded sequences were modeled using a bidirectional long short-term memory neural network (BLSTM-NN) based sequential classifier to accomplish person identification and verification. An accuracy of 98.78% was obtained for identification using decision fusion of dynamic signatures and EEG signals. The robustness of the framework was also tested against 1650 impersonation attempts made by 25 forged users by imitating the dynamic signatures of genuine users. Verification performance was measured using detection error tradeoff (DET) curves and half total error rate (HTER) security matrices using true positive rate (TPR) and false acceptance rate (FAR), resulting in 3.75% FAR and 1.87% HTER with 100% TPR for forgery attempts.


Assuntos
Identificação Biométrica/métodos , Segurança Computacional , Adulto , Encéfalo/fisiologia , Telefone Celular , Teoria da Densidade Funcional , Eletroencefalografia , Feminino , Humanos , Masculino , Redes Neurais de Computação , Adulto Jovem
6.
J Neuroeng Rehabil ; 15(1): 70, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30064477

RESUMO

BACKGROUND: The loss of an arm presents a substantial challenge for upper limb amputees when performing activities of daily living. Myoelectric prosthetic devices partially replace lost hand functions; however, lack of sensory feedback and strong understanding of the myoelectric control system prevent prosthesis users from interacting with their environment effectively. Although most research in augmented sensory feedback has focused on real-time regulation, sensory feedback is also essential for enabling the development and correction of internal models, which in turn are used for planning movements and reacting to control variability faster than otherwise possible in the presence of sensory delays. METHODS: Our recent work has demonstrated that audio-augmented feedback can improve both performance and internal model strength for an abstract target acquisition task. Here we use this concept in controlling a robotic hand, which has inherent dynamics and variability, and apply it to a more functional grasp-and-lift task. We assessed internal model strength using psychophysical tests and used an instrumented Virtual Egg to assess performance. RESULTS: Results obtained from 14 able-bodied subjects show that a classifier-based controller augmented with audio feedback enabled stronger internal model (p = 0.018) and better performance (p = 0.028) than a controller without this feedback. CONCLUSIONS: We extended our previous work and accomplished the first steps on a path towards bridging the gap between research and clinical usability of a hand prosthesis. The main goal was to assess whether the ability to decouple internal model strength and motion variability using the continuous audio-augmented feedback extended to real-world use, where the inherent mechanical variability and dynamics in the mechanisms may contribute to a more complicated interplay between internal model formation and motion variability. We concluded that benefits of using audio-augmented feedback for improving internal model strength of myoelectric controllers extend beyond a virtual target acquisition task to include control of a prosthetic hand.


Assuntos
Membros Artificiais , Exoesqueleto Energizado , Retroalimentação Sensorial/fisiologia , Robótica/métodos , Máquina de Vetores de Suporte , Adulto , Eletromiografia/métodos , Feminino , Mãos/fisiopatologia , Força da Mão/fisiologia , Humanos , Masculino
7.
Sensors (Basel) ; 18(9)2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30200595

RESUMO

Individuals with mobility impairments related to age, injury, or disease, often require the help of an assistive device (AD) such as a cane to ambulate, increase safety, and improve overall stability. Instrumenting these devices has been proposed as a non-invasive way to proactively monitor an individual's reliance on the AD while also obtaining information about behaviors and changes in gait. A critical first step in the analysis of these data, however, is the accurate processing and segmentation of the sensor data to extract relevant gait information. In this paper, we present a highly accurate multi-sensor-based gait segmentation algorithm that is robust to a variety of walking conditions using an AD. A matched filtering approach based on loading information is used in conjunction with an angular rate reversal and peak detection technique, to identify important gait events. The algorithm is tested over a variety of terrains using a hybrid sensorized cane, capable of measuring loading, mobility, and stability information. The reliability and accuracy of the proposed multi-sensor matched filter (MSMF) algorithm is compared with variations of the commonly employed gyroscope peak detection (GPD) algorithm. Results of an experiment with a group of 30 healthy participants walking over various terrains demonstrated the ability of the proposed segmentation algorithm to reliably and accurately segment gait events.


Assuntos
Algoritmos , Marcha , Adolescente , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Reprodutibilidade dos Testes , Adulto Jovem
8.
Sensors (Basel) ; 18(5)2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29783659

RESUMO

Specialized myoelectric sensors have been used in prosthetics for decades, but, with recent advancements in wearable sensors, wireless communication and embedded technologies, wearable electromyographic (EMG) armbands are now commercially available for the general public. Due to physical, processing, and cost constraints, however, these armbands typically sample EMG signals at a lower frequency (e.g., 200 Hz for the Myo armband) than their clinical counterparts. It remains unclear whether existing EMG feature extraction methods, which largely evolved based on EMG signals sampled at 1000 Hz or above, are still effective for use with these emerging lower-bandwidth systems. In this study, the effects of sampling rate (low: 200 Hz vs. high: 1000 Hz) on the classification of hand and finger movements were evaluated for twenty-six different individual features and eight sets of multiple features using a variety of datasets comprised of both able-bodied and amputee subjects. The results show that, on average, classification accuracies drop significantly ( p.


Assuntos
Técnicas Biossensoriais , Eletromiografia/métodos , Movimento/fisiologia , Dispositivos Eletrônicos Vestíveis , Amputados , Feminino , Mãos , Humanos , Masculino , Reconhecimento Automatizado de Padrão , Próteses e Implantes
9.
J Neural Eng ; 21(3)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38722304

RESUMO

Discrete myoelectric control-based gesture recognition has recently gained interest as a possible input modality for many emerging ubiquitous computing applications. Unlike the continuous control commonly employed in powered prostheses, discrete systems seek to recognize the dynamic sequences associated with gestures to generate event-based inputs. More akin to those used in general-purpose human-computer interaction, these could include, for example, a flick of the wrist to dismiss a phone call or a double tap of the index finger and thumb to silence an alarm. Moelectric control systems have been shown to achieve near-perfect classification accuracy, but in highly constrained offline settings. Real-world, online systems are subject to 'confounding factors' (i.e. factors that hinder the real-world robustness of myoelectric control that are not accounted for during typical offline analyses), which inevitably degrade system performance, limiting their practical use. Although these factors have been widely studied in continuous prosthesis control, there has been little exploration of their impacts on discrete myoelectric control systems for emerging applications and use cases. Correspondingly, this work examines, for the first time, three confounding factors and their effect on the robustness of discrete myoelectric control: (1)limb position variability, (2)cross-day use, and a newly identified confound faced by discrete systems (3)gesture elicitation speed. Results from four different discrete myoelectric control architectures: (1) Majority Vote LDA, (2) Dynamic Time Warping, (3) an LSTM network trained with Cross Entropy, and (4) an LSTM network trained with Contrastive Learning, show that classification accuracy is significantly degraded (p<0.05) as a result of each of these confounds. This work establishes that confounding factors are a critical barrier that must be addressed to enable the real-world adoption of discrete myoelectric control for robust and reliable gesture recognition.


Assuntos
Eletromiografia , Gestos , Reconhecimento Automatizado de Padrão , Humanos , Eletromiografia/métodos , Masculino , Reconhecimento Automatizado de Padrão/métodos , Feminino , Adulto , Adulto Jovem , Membros Artificiais
10.
Artigo em Inglês | MEDLINE | ID: mdl-38194392

RESUMO

In the field of EMG-based force modeling, the ability to generalize models across individuals could play a significant role in its adoption across a range of applications, including assistive devices, robotic and rehabilitation devices. However, current studies have predominately focused on intra-subject modeling, largely neglecting the burden of end-user data acquisition. In this work, we propose the use of transfer learning (TL) to generalize force modeling to a new user by first establishing a baseline model trained using other users' data, and then adapting to the end-user using a small amount of new data (only 10% , 20% , and 40% of the new user data). Using a deep multimodal convolutional neural network, consisting of two CNN models, one with high-density (HD) EMG and one with motion data recorded by an Inertial Measurement Unit (IMU), our proposed TL technique significantly improved force modeling compared to leave-one-subject-out (LOSO) and even intra-subject scenarios. The TL approach increased the average R squared values of the force modeling task by 60.81%, 190.53%, and 199.79% compared to the LOSO case, and by 13.4%, 36.88%, and 45.51% compared to the intra-subject case for isotonic, isokinetic and dynamic conditions, respectively. These results show that it is possible to adapt to a new user with minimal data while improving performance significantly compared to the intra-subject scenario. We also show that TL can be used to generalize on a new experimental condition for a new user.


Assuntos
Redes Neurais de Computação , Tecnologia Assistiva , Humanos , Eletromiografia/métodos , Extremidade Superior , Aprendizado de Máquina
11.
J Breath Res ; 18(2)2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38382095

RESUMO

Detection of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) relies on real-time-reverse-transcriptase polymerase chain reaction (RT-PCR) on nasopharyngeal swabs. The false-negative rate of RT-PCR can be high when viral burden and infection is localized distally in the lower airways and lung parenchyma. An alternate safe, simple and accessible method for sampling the lower airways is needed to aid in the early and rapid diagnosis of COVID-19 pneumonia. In a prospective unblinded observational study, patients admitted with a positive RT-PCR and symptoms of SARS-CoV-2 infection were enrolled from three hospitals in Ontario, Canada. Healthy individuals or hospitalized patients with negative RT-PCR and without respiratory symptoms were enrolled into the control group. Breath samples were collected and analyzed by laser absorption spectroscopy (LAS) for volatile organic compounds (VOCs) and classified by machine learning (ML) approaches to identify unique LAS-spectra patterns (breathprints) for SARS-CoV-2. Of the 135 patients enrolled, 115 patients provided analyzable breath samples. Using LAS-breathprints to train ML classifier models resulted in an accuracy of 72.2%-81.7% in differentiating between SARS-CoV2 positive and negative groups. The performance was consistent across subgroups of different age, sex, body mass index, SARS-CoV-2 variants, time of disease onset and oxygen requirement. The overall performance was higher than compared to VOC-trained classifier model, which had an accuracy of 63%-74.7%. This study demonstrates that a ML-based breathprint model using LAS analysis of exhaled breath may be a valuable non-invasive method for studying the lower airways and detecting SARS-CoV-2 and other respiratory pathogens. The technology and the ML approach can be easily deployed in any setting with minimal training. This will greatly improve access and scalability to meet surge capacity; allow early and rapid detection to inform therapy; and offers great versatility in developing new classifier models quickly for future outbreaks.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Estudos Prospectivos , RNA Viral , Testes Respiratórios , Aprendizado de Máquina
12.
J Neurophysiol ; 109(11): 2658-65, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23515790

RESUMO

In this paper, the predictive capability of surface and untargeted intramuscular electromyography (EMG) was compared with respect to wrist-joint torque to quantify which type of measurement better represents joint torque during multiple degrees-of-freedom (DoF) movements for possible application in prosthetic control. Ten able-bodied subjects participated in the study. Surface and intramuscular EMG was recorded concurrently from the right forearm. The subjects were instructed to track continuous contraction profiles using single and combined DoF in two trials. The association between torque and EMG was assessed using an artificial neural network. Results showed a significant difference between the two types of EMG (P < 0.007) for all performance metrics: coefficient of determination (R(2)), Pearson correlation coefficient (PCC), and root mean square error (RMSE). The performance of surface EMG (R(2) = 0.93 ± 0.03; PCC = 0.98 ± 0.01; RMSE = 8.7 ± 2.1%) was found to be superior compared with intramuscular EMG (R(2) = 0.80 ± 0.07; PCC = 0.93 ± 0.03; RMSE = 14.5 ± 2.9%). The higher values of PCC compared with R(2) indicate that both methods are able to track the torque profile well but have some trouble (particularly intramuscular EMG) in estimating the exact amplitude. The possible cause for the difference, thus the low performance of intramuscular EMG, may be attributed to the very high selectivity of the recordings used in this study.


Assuntos
Atividade Motora , Músculo Esquelético/fisiologia , Torque , Punho/fisiologia , Adulto , Eletromiografia , Feminino , Humanos , Masculino , Contração Muscular , Redes Neurais de Computação
13.
J Prosthet Orthot ; 25(2): 76-83, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23894224

RESUMO

The performance of pattern recognition based myoelectric control has seen significant interest in the research community for many years. Due to a recent surge in the development of dexterous prosthetic devices, determining the clinical viability of multifunction myoelectric control has become paramount. Several factors contribute to differences between offline classification accuracy and clinical usability, but the overriding theme is that the variability of the elicited patterns increases greatly during functional use. Proportional control has been shown to greatly improve the usability of conventional myoelectric control systems. Typically, a measure of the amplitude of the electromyogram (a rectified and smoothed version) is used to dictate the velocity of control of a device. The discriminatory power of myoelectric pattern classifiers, however, is also largely based on amplitude features of the electromyogram. This work presents an introductory look at the effect of contraction strength and proportional control on pattern recognition based control. These effects are investigated using typical pattern recognition data collection methods as well as a real-time position tracking test. Training with dynamically force varying contractions and appropriate gain selection is shown to significantly improve (p<0.001) the classifier's performance and tolerance to proportional control.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38083158

RESUMO

Deep learning (DL) has become a powerful tool in many image classification applications but often requires large training sets to achieve high accuracy. For applications where the available data are limited, this can become a severely limiting factor in model performance. To address this limitation, feature learning network approaches that integrate traditional feature extraction methods with DL frameworks have been proposed. In this study, the performances of traditional methods: discrete wavelet transform (DWT), discrete cosine transform (DCT), independent component analysis (ICA), and principal component analysis (PCA); and their corresponding feature networks based on a convolutional neural network (CNN) framework: ScatNet (wavelet scattering network), DCTNet, ICANet, and PCANet, were investigated for use in pressure-based footstep recognition when the limited sample size is available for person authentication. The results show that the feature learning networks (90.6% accuracy) achieved significantly better performance on average than the conventional feature extraction methods (79.7% accuracy) (p < 0.05). Among the different feature networks, PCANet provided the best verification performance, with an accuracy of 92.2%. Feature learning networks are simple and effective approaches that can be a promising solution for applications like floor-based gait recognition in a security access scenario (such as workspace environment and border control) when small amounts of data are available for training models to differentiate between a larger group of users.


Assuntos
Marcha , Redes Neurais de Computação , Humanos , Análise de Ondaletas , Análise de Componente Principal
15.
IEEE J Biomed Health Inform ; 27(12): 6051-6061, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37721893

RESUMO

Post-processing techniques have been shown to improve the quality of the decision stream generated by classifiers used in pattern-recognition-based myoelectric control. However, these techniques have largely been tested individually and on well-behaved, stationary data, failing to fully evaluate their trade-offs between smoothing and latency during dynamic use. Correspondingly, in this work, we survey and compare 8 different post-processing and decision stream improvement schemes in the context of continuous and dynamic class transitions: majority vote, Bayesian fusion, onset locking, outlier detection, confidence-based rejection, confidence scaling, prior adjustment, and adaptive windowing. We then propose two new temporally aware post-processing schemes that use changes in the decision and confidence streams to better reject uncertain decisions. Our decision-change informed rejection (DCIR) approach outperforms existing schemes during both steady-state and transitions based on error rates and decision stream volatility whether using conventional or deep classifiers. These results suggest that added robustness can be gained by appropriately leveraging temporal context in myoelectric control.


Assuntos
Reconhecimento Automatizado de Padrão , Humanos , Teorema de Bayes , Eletromiografia/métodos , Reconhecimento Automatizado de Padrão/métodos
16.
IEEE Trans Biomed Circuits Syst ; 17(5): 968-984, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37695958

RESUMO

In this work, we present a hardware-software solution to improve the robustness of hand gesture recognition to confounding factors in myoelectric control. The solution includes a novel, full-circumference, flexible, 64-channel high-density electromyography (HD-EMG) sensor called EMaGer. The stretchable, wearable sensor adapts to different forearm sizes while maintaining uniform electrode density around the limb. Leveraging this uniformity, we propose novel array barrel-shifting data augmentation (ABSDA) approach used with a convolutional neural network (CNN), and an anti-aliased CNN (AA-CNN), that provides shift invariance around the limb for improved classification robustness to electrode movement, forearm orientation, and inter-session variability. Signals are sampled from a 4×16 HD-EMG array of electrodes at a frequency of 1 kHz and 16-bit resolution. Using data from 12 non-amputated participants, the approach is tested in response to sensor rotation, forearm rotation, and inter-session scenarios. The proposed ABSDA-CNN method improves inter-session accuracy by 25.67% on average across users for 6 gesture classes compared to conventional CNN classification. A comparison with other devices shows that this benefit is enabled by the unique design of the EMaGer array. The AA-CNN yields improvements of up to 63.05% accuracy over non-augmented methods when tested with electrode displacements ranging from -45 ° to +45 ° around the limb. Overall, this article demonstrates the benefits of co-designing sensor systems, processing methods, and inference algorithms to leverage synergistic and interdependent properties to solve state-of-the-art problems.


Assuntos
Aprendizado Profundo , Dispositivos Eletrônicos Vestíveis , Humanos , Eletromiografia , Gestos , Algoritmos , Antebraço/fisiologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-35333717

RESUMO

Studies have shown that closed-loop myoelectric control schemes can lead to changes in user performance and behavior compared to open-loop systems. When users are placed within the control loop, such as during real-time use, they must correct for errors made by the controller and learn what behavior is necessary to produce desired outcomes. Augmented feedback, consequently, has been used to incorporate the user throughout the training process and to facilitate learning. This work explores the effect of visual feedback presented during user training on both the performance and predictability of a myoelectric classification-based control system. Our results suggest that properly designed feedback mechanisms and training tasks can influence the quality of the training data and the ability to predict usability using linear combinations of metrics derived from feature space. Furthermore, our results confirm that the most common in-lab training protocol, screen guided training, may yield training data that are less representative of online use than training protocols that incorporate the user in the loop. These results suggest that training protocols should be designed that better parallel the testing environment to more effectively prepare both the algorithms and users for real-time control.


Assuntos
Biorretroalimentação Psicológica , Retroalimentação Sensorial , Algoritmos , Eletromiografia/métodos , Retroalimentação , Humanos
18.
J Breath Res ; 16(2)2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35294929

RESUMO

Early diagnosis of lung cancer greatly improves the likelihood of survival and remission, but limitations in existing technologies like low-dose computed tomography have prevented the implementation of widespread screening programs. Breath-based solutions that seek disease biomarkers in exhaled volatile organic compound (VOC) profiles show promise as affordable, accessible and non-invasive alternatives to traditional imaging. In this pilot work, we present a lung cancer detection framework using cavity ring-down spectroscopy (CRDS), an effective and practical laser absorption spectroscopy technique that has the ability to advance breath screening into clinical reality. The main aims of this work were to (1) test the utility of infrared CRDS breath profiles for discriminating non-small cell lung cancer (NSCLC) patients from controls, (2) compare models with VOCs as predictors to those with patterns from the CRDS spectra (breathprints) as predictors, and (3) present a robust approach for identifying relevant disease biomarkers. First, based on a proposed learning curve technique that estimated the limits of a model's performance at multiple sample sizes (10-158), the CRDS-based models developed in this work were found to achieve classification performance comparable or superior to like mass spectroscopy and sensor-based systems. Second, using 158 collected samples (62 NSCLC subjects and 96 controls), the accuracy range for the VOC-based model was 65.19%-85.44% (51.61%-66.13% sensitivity and 73.96%-97.92% specificity), depending on the employed cross-validation technique. The model based on breathprint predictors generally performed better, with accuracy ranging from 71.52%-86.08% (58.06%-82.26% sensitivity and 80.21%-88.54% specificity). Lastly, using a protocol based on consensus feature selection, three VOCs (isopropanol, dimethyl sulfide, and butyric acid) and two breathprint features (from a local binary pattern transformation of the spectra) were identified as possible NSCLC biomarkers. This research demonstrates the potential of infrared CRDS breath profiles and the developed early-stage classification techniques for lung cancer biomarker detection and screening.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Compostos Orgânicos Voláteis , Biomarcadores Tumorais , Testes Respiratórios/métodos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Análise Espectral
19.
IEEE Int Conf Rehabil Robot ; 2022: 1-5, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36176075

RESUMO

Co-adaptive myoelectric human-machine systems are a fairly recent, but promising, advancement in pattern recognition-based myoelectric control. Their performance and stability, however, are not fully understood due in part to a lack of proper assessment tools. Time-series based analyses are typically used despite the availability of techniques used in other fields that can robustly measure stability and performance. In this research, we leverage the success achieved by lower limb systems to improve the assessment framework of co-adaptive myoelectric systems by exploiting a key feature common between the two systems. The cyclical dynamics found in lower limbs are also apparent in co-adaptive myoelectric systems, allowing us to analyze their behavior using Poincaré maps. A 10-day experiment was designed and conducted to observe the effects of algorithm adaptation and myoelectric experience level on the performance of a co-adaptive myoelectric control system. Through Poincaré maps, we were able to identify learning effects, as well as oscillations and uncertainty in performance. Assessment of these seemingly random variations in performance led to the inference that co-adaptive systems can be chaotic. Modelling co-adaptive myoelectric systems as cyclical leads to the application of an improved framework to better assess and describe their dynamics and performance.


Assuntos
Adaptação Fisiológica , Membros Artificiais , Eletromiografia/métodos , Humanos , Aprendizagem
20.
IEEE J Biomed Health Inform ; 26(7): 2888-2897, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35015656

RESUMO

Efficient storage and transmission of electromyogram (EMG) data are important for emerging applications such as telemedicine and big data, as a vital tool for further advancement of the field. However, due to limitations in internet speed and hardware resources, transmission and storage of EMG data are challenging. As a solution, this work proposes a new method for EMG data compression using deep convolutional autoencoders (CAE). Eight-channel EMG data from 10 subjects, and high-density EMG data from 18 subjects, were investigated for compression. The CAE architecture was designed to extract an abstract data representation that is heavily compressed, but from which the salient information for classification can be effectively reconstructed. The proposed method attained efficient compression; for CR = 1600, the average PRDN (percentage RMS difference normalized) was 31.5% and the wrist motions classification accuracy (CA) reduced roughly 5%. The CAE substantially outperformed the state-of-the-art high-efficiency video coding and a well-known wavelet-thresholding compression technique. Moreover, by reducing the bit-resolution of the CAE's compressed data from 24 bits to 6 bits, an additional 4-fold compression was achieved without significant degradation of the reconstruction performance. Furthermore, the CAE's inter-subject performance was promising; e.g., for CR = 1600, the PRDN for the inter-subject case was only 2.6% less than that of the within-subject performance. The powerful EMG compression performance with remarkable reconstruction results reflects the CAEs potential as an automatic end-to-end approach with the ability to learn the complete encoding and decoding process. Furthermore, the excellent inter-subject performance demonstrates the generalizability and usability of the proposed approach.


Assuntos
Compressão de Dados , Algoritmos , Compressão de Dados/métodos , Eletromiografia/métodos , Humanos , Redes Neurais de Computação , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA