Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 183(2): 303-304, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33064985

RESUMO

PD1/PD-L1-directed immunotherapy, alone or in combination with chemotherapy, dominates the initial treatment of metastatic non-small cell lung cancer. However, our ability to predict who will benefit from these approaches is limited. In this issue of Cell, Nabet et al. report a novel, blood-based methodology to more accurately predict durable disease control with immunotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antígeno B7-H1 , Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas/terapia , Humanos , Inibidores de Checkpoint Imunológico , Imunoterapia , Neoplasias Pulmonares/tratamento farmacológico
2.
Cell ; 182(5): 1232-1251.e22, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32822576

RESUMO

Lung cancer, the leading cause of cancer mortality, exhibits heterogeneity that enables adaptability, limits therapeutic success, and remains incompletely understood. Single-cell RNA sequencing (scRNA-seq) of metastatic lung cancer was performed using 49 clinical biopsies obtained from 30 patients before and during targeted therapy. Over 20,000 cancer and tumor microenvironment (TME) single-cell profiles exposed a rich and dynamic tumor ecosystem. scRNA-seq of cancer cells illuminated targetable oncogenes beyond those detected clinically. Cancer cells surviving therapy as residual disease (RD) expressed an alveolar-regenerative cell signature suggesting a therapy-induced primitive cell-state transition, whereas those present at on-therapy progressive disease (PD) upregulated kynurenine, plasminogen, and gap-junction pathways. Active T-lymphocytes and decreased macrophages were present at RD and immunosuppressive cell states characterized PD. Biological features revealed by scRNA-seq were biomarkers of clinical outcomes in independent cohorts. This study highlights how therapy-induced adaptation of the multi-cellular ecosystem of metastatic cancer shapes clinical outcomes.


Assuntos
Neoplasias Pulmonares/genética , Biomarcadores Tumorais/genética , Linhagem Celular , Ecossistema , Humanos , Neoplasias Pulmonares/patologia , Macrófagos/patologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Linfócitos T/patologia , Microambiente Tumoral/genética
3.
PLoS Comput Biol ; 18(6): e1009486, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35704658

RESUMO

The tumor microenvironment (TME), which characterizes the tumor and its surroundings, plays a critical role in understanding cancer development and progression. Recent advances in imaging techniques enable researchers to study spatial structure of the TME at a single-cell level. Investigating spatial patterns and interactions of cell subtypes within the TME provides useful insights into how cells with different biological purposes behave, which may consequentially impact a subject's clinical outcomes. We utilize a class of well-known spatial summary statistics, the K-function and its variants, to explore inter-cell dependence as a function of distances between cells. Using techniques from functional data analysis, we introduce an approach to model the association between these summary spatial functions and subject-level outcomes, while controlling for other clinical scalar predictors such as age and disease stage. In particular, we leverage the additive functional Cox regression model (AFCM) to study the nonlinear impact of spatial interaction between tumor and stromal cells on overall survival in patients with non-small cell lung cancer, using multiplex immunohistochemistry (mIHC) data. The applicability of our approach is further validated using a publicly available multiplexed ion beam imaging (MIBI) triple-negative breast cancer dataset.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Ciência de Dados , Humanos , Imuno-Histoquímica , Microambiente Tumoral
4.
Invest New Drugs ; 40(1): 115-123, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34515877

RESUMO

PURPOSE: Targeting the vascular endothelial growth factor (VEGF) pathway improves progression free survival in multiple advanced malignancies but durable responses are uncommon. Inhibition of the VEGF pathway at multiple levels of signal transduction may improve clinical outcomes. Preclinical data with cediranib, an inhibitor of all 3 VEGF receptors, in combination with selumetinib, an inhibitor of MEK 1/2, demonstrated improved tumor control experimentally. This phase I trial was designed to test the two agents in combination to evaluate the tolerability, safety and assess disease response. METHODS: Patients with advanced solid malignancies were enrolled into this phase I trial. Cediranib and selumetinib were dosed using a toxicity-adaptive isotonic design for the dose escalation/de-escalation of each agent. Both cediranib and selumetinib were administered daily and continuously. Cycles were 28 days in length. RESULTS: Eighteen patients were enrolled. At all dose levels, dose limiting toxicities (DLT) were observed, which limited dose escalation and further evaluation. The maximum tolerated dose of cediranib and selumetinib in combination could not be determined. The best response of stable disease was observed in eight patients. CONCLUSIONS: Cediranib and selumetinib in combination on a continuous schedule was not tolerable, with patients experiencing cardiovascular and other DLTs. Intermittent schedules may be needed to establish a safe and tolerable combination of cediranib and selumetinib.


Assuntos
Antineoplásicos/uso terapêutico , Benzimidazóis/uso terapêutico , Neoplasias/tratamento farmacológico , Quinazolinas/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Benzimidazóis/administração & dosagem , Benzimidazóis/efeitos adversos , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Humanos , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinazolinas/administração & dosagem , Quinazolinas/efeitos adversos , Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
5.
J Immunol ; 204(8): 2295-2307, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32179637

RESUMO

MHC class II (MHCII) expression is usually restricted to APC but can be expressed by cancer cells. We examined the effect of cancer cell-specific MHCII (csMHCII) expression in lung adenocarcinoma on T cell recruitment to tumors and response to anti-PD-1 therapy using two orthotopic immunocompetent murine models of non-small cell lung cancer: CMT167 (CMT) and Lewis lung carcinoma (LLC). We previously showed that CMT167 tumors are eradicated by anti-PD1 therapy, whereas LLC tumors are resistant. RNA sequencing analysis of cancer cells recovered from tumors revealed that csMHCII correlated with response to anti-PD1 therapy, with immunotherapy-sensitive CMT167 cells being csMHCII positive, whereas resistant LLC cells were csMHCII negative. To test the functional effects of csMHCII, MHCII expression was altered on the cancer cells through loss- and gain-of-function of CIITA, a master regulator of the MHCII pathway. Loss of CIITA in CMT167 decreased csMHCII and converted tumors from anti-PD-1 sensitive to anti-PD-1 resistant. This was associated with lower levels of Th1 cytokines, decreased T cell infiltration, increased B cell numbers, and decreased macrophage recruitment. Conversely, overexpression of CIITA in LLC cells resulted in csMHCII in vitro and in vivo. Enforced expression of CIITA increased T cell infiltration and sensitized tumors to anti-PD-1 therapy. csMHCII expression was also examined in a subset of surgically resected human lung adenocarcinomas by multispectral imaging, which provided a survival benefit and positively correlated with T cell infiltration. These studies demonstrate a functional role for csMHCII in regulating T cell infiltration and sensitivity to anti-PD-1.


Assuntos
Adenocarcinoma de Pulmão/terapia , Antígenos de Histocompatibilidade Classe II/genética , Neoplasias Pulmonares/terapia , Proteínas Nucleares/genética , Transativadores/genética , Microambiente Tumoral/genética , Adenocarcinoma de Pulmão/imunologia , Animais , Modelos Animais de Doenças , Antígenos de Histocompatibilidade Classe II/imunologia , Neoplasias Pulmonares/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/imunologia , Receptor de Morte Celular Programada 1/imunologia , Transativadores/imunologia , Microambiente Tumoral/imunologia
6.
Oncologist ; 26(3): e454-e472, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33179378

RESUMO

Lung cancer is the leading cause of cancer death in both males and females in the U.S. and worldwide. Owing to advances in prevention, screening/early detection, and therapy, lung cancer mortality rates are decreasing and survival rates are increasing. These innovations are based on scientific discoveries in imaging, diagnostics, genomics, molecular therapy, and immunotherapy. Outcomes have improved in all histologies and stages. This review provides information on the clinical implications of these innovations that are practical for the practicing physicians, especially oncologists of all specialities who diagnose and treat patients with lung cancer. IMPLICATIONS FOR PRACTICE: Lung cancer survival rates have improved because of new prevention, screening, and therapy methods. This work provides a review of current standards for each of these areas, including targeted and immunotherapies. Treatment recommendations are provided for all stages of lung cancer.


Assuntos
Neoplasias Pulmonares , Feminino , Genômica , Humanos , Imunoterapia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/terapia , Masculino , Programas de Rastreamento , Taxa de Sobrevida
7.
Adv Radiat Oncol ; 9(7): 101516, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38868503

RESUMO

Purpose: We first described the role of local radiation therapy (LT) for oligoprogressive disease (OPD) on targeted therapy in 2012. Here, we present an updated and larger data set and extend the analysis beyond EGFR and ALK. Methods: A retrospective review of patients with metastatic NSCLC harboring EGFR/BRAF V600E mutations, or ALK/ROS1/RET rearrangements, who had OPD on respective tyrosine-kinase inhibitor (TKI) and treated with LT was performed. OPD was defined as disease progression on therapy in ≤5 sites. PFS1 (progression-free survival 1) was defined as time from initiation of TKI-containing regimen to the first course of LT for OPD. Subsequent PFS times (eg, PFS2, PFS3) were defined as time from prior LT to subsequent LT, switch of systemic therapy, death, or loss to follow-up, whichever occurred first. Extended-PFS was defined as time from the first day of the first LT course to the day of change in systemic therapy, death, or loss to follow-up, whichever came first. Results: Eighty-nine patients were identified. In 75.4% of the LT courses, a single lesion was treated. Median PFS1 was 10.2 months (95% CI, 8.7-13.1) and median Extended-PFS was 6.7 months (95% CI, 4.9-8.3). Extended-PFS was similar across different oncogenic drivers; 51.4% of patients who underwent LT to a single site had only 1 site on next disease progression. Conclusions: LT is effective in prolonging treatment duration on TKI in oncogene-addicted NSCLC across multiple oncogenes.

8.
Clin Lung Cancer ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39384504

RESUMO

BACKGROUND: Gene copy number gain (CNG) is a continuous variable. The relevant cutpoint for HER2, KRAS and MET CNG in non-mall cell lung cancer remains uncertain. As de novo driver oncogenes are largely mutually exclusive, oncogene overlap analysis can be used to explore CNG thresholds. PATIENT AND METHODS: We retrospectively analysed NGS of DNA/RNA in 13,702 NSCLC adenocarcinoma samples. Alternate and same-gene driver oncogene co-occurrence with HER2, KRAS and MET CNG was examined. Overall survival (OS) from time of biopsy collection was correlated with CNG and pathogenic mutations in driver oncogenes (Driver+). RESULTS: The frequency of Driver+ tumors decreased with increasing CNG. Setting CNG thresholds by oncogene overlap and dataset size (CNA ≥ 6 for HER2, KRAS and ≥ 4 for MET), tumors considered relevantly amplified (Amp) for MET, HER2 and KRAS were significantly less likely to be Driver+ (P < .001). When Driver+ did overlap with Amp status, same-gene alterations (mutation and CNG) were significantly enriched for all 3 genes (HER2, KRAS and MET), while BRAF and EGFR mutations were more common in MET-Amp than in HER2- or KRAS-Amp tumors. A negative OS association with Amp status was independent of Driver+ status for HER2 and MET, however not KRAS. CONCLUSION: Tissue NGS-based HER2, KRAS and MET CNG thresholds set by oncogene overlap identified potentially clinically relevant "Amp" subgroups with altered genetic profiles and decreased survival. Prospective research into targeted therapy benefit in these groups is encouraged.

9.
JTO Clin Res Rep ; 5(2): 100637, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38361741

RESUMO

Introduction: Acquired MET gene amplification, MET exon 14 skip mutations, or MET fusions can emerge as resistance mechanisms to tyrosine kinase inhibitors (TKIs) in patients with lung cancer. The efficacy and safety of combining MET TKIs (such as crizotinib, capmatinib, or tepotinib) with parent TKIs to target acquired MET resistance are not well characterized. Methods: Multi-institutional retrospective chart review identified 83 patients with metastatic oncogene-driven NSCLC that were separated into the following two pairwise matched cohorts: (1) MET cohort (n = 41)-patients with acquired MET resistance continuing their parent TKI with a MET TKI added or (2) Chemotherapy cohort (n = 42)-patients without any actionable resistance continuing their parent TKI with a platinum-pemetrexed added. Clinicopathologic features, radiographic response (by means of Response Evaluation Criteria in Solid Tumors version 1.1), survival outcomes, adverse events (AEs) (by means of Common Terminology Criteria for Adverse Events version 5.0), and genomic data were collected. Survival outcomes were assessed using Kaplan-Meier methods. Multivariate modeling adjusted for lines of therapy, brain metastases, TP53 mutations, and oligometastatic disease. Results: Within the MET cohort, median age was 56 years (range: 36-83 y). Most patients were never smokers (28 of 41, 68.3%). Baseline brain metastases were common (21 of 41, 51%). The most common oncogenes in the MET cohort were EGFR (30 of 41, 73.2%), ALK (seven of 41, 17.1%), and ROS1 (two of 41, 4.9%). Co-occurring TP53 mutations (32 of 41, 78%) were frequent. Acquired MET alterations included MET gene amplification (37 of 41, 90%), MET exon 14 mutations (two of 41, 5%), and MET gene fusions (two of 41, 5%). After multivariate adjustment, the objective response rate (ORR) was higher in the MET cohort versus the chemotherapy cohort (ORR: 69.2% versus 20%, p < 0.001). Within the MET cohort, MET gene copy number (≥10 versus 6-10) did not affect radiographic response (54.5% versus 68.4%, p = 0.698). There was no difference in ORR on the basis of MET TKI used (F [2, 36] = 0.021, p = 0.978). There was no difference in progression-free survival (5 versus 6 mo; hazard ratio = 0.64; 95% confidence interval: 0.34-1.23, p = 0.18) or overall survival (13 versus 11 mo; hazard ratio = 0.75; 95% confidence interval: 0.42-1.35, p = 0.34) between the MET and chemotherapy cohorts. In the MET cohort, dose reductions for MET TKI-related toxicities were common (17 of 41, 41.4%) but less frequent for parent TKIs (two of 41, 5%). Grade 3 AEs were not significant between crizotinib, capmatinib, and tepotinib (p = 0.3). The discontinuation rate of MET TKIs was 17% with no significant differences between MET TKIs (p = 0.315). Among pre- and post-treatment biopsies (n = 17) in the MET cohort, the most common next-generation sequencing findings were loss of MET gene amplification (15 of 17, 88.2%), MET on-target mutations (seven of 17, 41.2%), new Ras-Raf-MAPK alterations (three of 17, 17.6%), and EGFR gene amplification (two of 17, 11.7%). Conclusions: The efficacy and safety of combining MET TKIs (crizotinib, capmatinib, or tepotinib) with parent TKIs for acquired MET resistance are efficacious. Radiographic response and AEs did not differ significantly on the basis of the underlying MET TKI used. Loss of MET gene amplification, development of MET on-target mutations, Ras-Raf-MAPK alterations, and EGFR gene amplification were molecular patterns found on progression with dual parent and MET TKI combinations.

10.
J Clin Oncol ; 42(11): e1-e22, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38417091

RESUMO

PURPOSE: To provide evidence-based recommendations for patients with stage IV non-small cell lung cancer with driver alterations. METHODS: This ASCO living guideline offers continually updated recommendations based on an ongoing systematic review of randomized clinical trials (RCTs), with the latest time frame spanning February to October 2023. An Expert Panel of medical oncology, pulmonary, community oncology, research methodology, and advocacy experts were convened. The literature search included systematic reviews, meta-analyses, and randomized controlled trials. Outcomes of interest include efficacy and safety. Expert Panel members used available evidence and informal consensus to develop evidence-based guideline recommendations. RESULTS: This guideline consolidates all previous updates and reflects the body of evidence informing this guideline topic. Eight new RCTs were identified in the latest search of the literature to date. RECOMMENDATIONS: Evidence-based recommendations were updated to address first, second, and subsequent treatment options for patients based on targetable driver alterations.Additional information is available at www.asco.org/living-guidelines.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Estadiamento de Neoplasias , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Ensaios Clínicos Controlados Aleatórios como Assunto , Oncologia/normas
11.
J Clin Oncol ; 42(11): e23-e43, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38417098

RESUMO

PURPOSE: To provide evidence-based recommendations for patients with stage IV non-small cell lung cancer (NSCLC) without driver alterations. METHODS: This ASCO living guideline offers continually updated recommendations based on an ongoing systematic review of randomized clinical trials (RCTs), with the latest time frame spanning February to October 2023. An Expert Panel of medical oncology, pulmonary, community oncology, research methodology, and advocacy experts were convened. The literature search included systematic reviews, meta-analyses, and randomized controlled trials. Outcomes of interest include efficacy and safety. Expert Panel members used available evidence and informal consensus to develop evidence-based guideline recommendations. RESULTS: This guideline consolidates all previous updates and reflects the body of evidence informing this guideline topic. Ten new RCTs were identified in the latest search of the literature to date. RECOMMENDATIONS: Evidence-based recommendations were updated to address first, second, and subsequent treatment options for patients without driver alterations.Additional information is available at www.asco.org/living-guidelines.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Estadiamento de Neoplasias , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Ensaios Clínicos Controlados Aleatórios como Assunto , Oncologia/normas
12.
J Clin Oncol ; 42(26): 3105-3114, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39028931

RESUMO

PURPOSE: To assess the safety and efficacy of the third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor osimertinib as neoadjuvant therapy in patients with surgically resectable stage I-IIIA EGFR-mutated non-small cell lung cancer (NSCLC). PATIENTS AND METHODS: This was a multi-institutional phase II trial of neoadjuvant osimertinib for patients with surgically resectable stage I-IIIA (American Joint Committee on Cancer [AJCC] V7) EGFR-mutated (L858R or exon 19 deletion) NSCLC (ClinicalTrials.gov identifier: NCT03433469). Patients received osimertinib 80 mg orally once daily for up to two 28-day cycles before surgical resection. The primary end point was major pathological response (MPR) rate. Secondary safety and efficacy end points were also assessed. Exploratory end points included pretreatment and post-treatment tumor mutation profiling. RESULTS: A total of 27 patients were enrolled and treated with neoadjuvant osimertinib for a median 56 days before surgical resection. Twenty-four (89%) patients underwent subsequent surgery; three (11%) patients were converted to definitive chemoradiotherapy. The MPR rate was 14.8% (95% CI, 4.2 to 33.7). No pathological complete responses were observed. The ORR was 52%, and the median DFS was 40.9 months. One treatment-related serious adverse event (AE) occurred (3.7%). No patients were unable to undergo surgical resection or had surgery delayed because of an AE. The most common co-occurring tumor genomic alterations were in TP53 (42%) and RBM10 (21%). CONCLUSION: Treatment with neoadjuvant osimertinib in surgically resectable (stage IA-IIIA, AJCC V7) EGFR-mutated NSCLC did not meet its primary end point for MPR rate. However, neoadjuvant osimertinib did not lead to unanticipated AEs, surgical delays, nor result in a significant unresectability rate.


Assuntos
Acrilamidas , Compostos de Anilina , Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Neoplasias Pulmonares , Mutação , Terapia Neoadjuvante , Humanos , Acrilamidas/uso terapêutico , Feminino , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Compostos de Anilina/uso terapêutico , Compostos de Anilina/efeitos adversos , Masculino , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Pessoa de Meia-Idade , Receptores ErbB/genética , Idoso , Estadiamento de Neoplasias , Adulto , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/administração & dosagem , Antineoplásicos/uso terapêutico , Antineoplásicos/efeitos adversos , Antineoplásicos/administração & dosagem , Indóis , Pirimidinas
13.
Cancer Res Commun ; 4(7): 1677-1689, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38896052

RESUMO

Aberrant activation of GLI transcription factors has been implicated in the pathogenesis of different tumor types including pancreatic ductal adenocarcinoma. However, the mechanistic link with established drivers of this disease remains in part elusive. In this study, using a new genetically engineered mouse model overexpressing constitutively active mouse form of GLI2 and a combination of genome-wide assays, we provide evidence of a novel mechanism underlying the interplay between KRAS, a major driver of pancreatic ductal adenocarcinoma development, and GLI2 to control oncogenic gene expression. These mice, also expressing KrasG12D, show significantly reduced median survival rate and accelerated tumorigenesis compared with the KrasG12D only expressing mice. Analysis of the mechanism using RNA sequencing demonstrate higher levels of GLI2 targets, particularly tumor growth-promoting genes, including Ccnd1, N-Myc, and Bcl2, in KrasG12D mutant cells. Furthermore, chromatin immunoprecipitation sequencing studies showed that in these cells KrasG12D increases the levels of trimethylation of lysine 4 of the histone 3 (H3K4me3) at the promoter of GLI2 targets without affecting significantly the levels of other major active chromatin marks. Importantly, Gli2 knockdown reduces H3K4me3 enrichment and gene expression induced by mutant Kras. In summary, we demonstrate that Gli2 plays a significant role in pancreatic carcinogenesis by acting as a downstream effector of KrasG12D to control gene expression.


Assuntos
Carcinoma Ductal Pancreático , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas p21(ras) , Proteína Gli2 com Dedos de Zinco , Animais , Humanos , Camundongos , Carcinogênese , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Histonas/metabolismo , Histonas/genética , Camundongos Transgênicos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transcrição Gênica , Proteína Gli2 com Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo
14.
Transl Lung Cancer Res ; 12(2): 322-336, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36895933

RESUMO

Background and Objective: Patients with metastatic anaplastic lymphoma kinase (ALK)+ non-small cell lung cancer (NSCLC) often experience years of disease control on targeted therapies but the disease eventually develops resistance and progresses. Multiple clinical trial efforts to incorporate PD-1/PD-L1 immunotherapy into the treatment paradigm for ALK+ NSCLC have resulted in significant toxicities without clear improvement in patient outcomes. Observations from clinical trials, translational studies, and preclinical models suggest the immune system interacts with ALK+ NSCLC and this interaction is heightened with the initiation of targeted therapy. The objective of this review is to summarize knowledge to date about current and potential immunotherapy approaches for patients with ALK+ NSCLC. Methods: To identify the relevant literature and clinical trials the databases PubMed.gov and ClinicalTrials.gov were queried with keywords "ALK" and "lung cancer". PubMed search was further refined with terms such as "immunotherapy", "tumor microenvironment or TME", "PD-1", and "T cells". The search for clinical trials was limited to interventional studies. Key Content and Findings: In this review, the current status of PD-1/PD-L1 immunotherapy for ALK+ NSCLC is updated and alternative immunotherapy approaches are highlighted in the context of available patient level and translational data on the ALK+ NSCLC tumor microenvironment (TME). An increase in CD8+ T cells within the ALK+ NSCLC TME has been observed with targeted therapy initiation across multiple studies. Therapies to augment this including tumor infiltrating lymphocyte (TIL) therapy, modified cytokines, and oncolytic viruses are reviewed. Furthermore, the contribution of innate immune cells in TKI mediated tumor cell clearance is discussed as a future target for novel immunotherapy approaches that promote cancer cell phagocytosis. Conclusions: Immune modulating strategies derived from current and evolving knowledge of the ALK+ NSCLC TME may have a role in ALK+ NSCLC beyond PD-1/PD-L1 based immunotherapy.

15.
Transl Lung Cancer Res ; 12(12): 2538-2549, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38205210

RESUMO

Background: Anaplastic lymphoma kinase (ALK) rearrangement is one of the most important drivers in non-small cell lung cancer (NSCLC). Despite the effectiveness to canonical 3'-ALK fusions, the clinical efficacy of ALK inhibitors in patients with complex ALK fusions, such as nonreciprocal/reciprocal translocation remains uncertain. Exploring the optimal therapeutic regimens for this subset of patients is of crucial clinical significance. Case Description: We reported a female patient diagnosed with stage IVB lung adenocarcinoma (LUAD) harboring a novel ALK-RNF144A fusion, concurrent with a Huntingtin-interacting protein 1 (HIP1)-ALK fusion and a RB1 loss-of-function variant. The patient sequentially received multiple lines of treatment with ALK-tyrosine kinase inhibitor (TKI), chemotherapy, radiotherapy and ALK-TKI combined with anti-angiogenesis. Disease progression accompanied by a squamous cell carcinoma transformation was indicated after ALK-TKI combined with anti-angiogenesis and both ALK-RNF144A and HIP1-ALK fusions were retained in the tumor. The patient was subsequently treated with a third generation ALK-TKI, lorlatinib, in combination with albumin-bound paclitaxel and anlotinib, and then achieved stable disease. The patient remained on the treatment as of the last follow-up resulting in an overall survival (OS) of more than 18 months. Conclusions: We have reported an advanced NSCLC patient with a complex nonreciprocal/reciprocal ALK translocation containing a novel ALK-RNF144A fusion, concurrent with a RB1 loss-of-function mutation, who subsequently experienced pathological squamous cell carcinoma transformation. The combined treatment with ALK-TKI, chemotherapy, and anti-angiogenesis demonstrates clinical efficacy and may provide optional therapeutic strategies for this phenotype.

16.
NPJ Precis Oncol ; 7(1): 9, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690705

RESUMO

Patients with metastatic NSCLC bearing a ROS1 gene fusion usually experience prolonged disease control with ROS1-targeting tyrosine kinase inhibitors (TKI), but significant clinical heterogeneity exists in part due to the presence of co-occurring genomic alterations. Here, we report on a patient with metastatic NSCLC with a concurrent ROS1 fusion and KRAS p.G12C mutation at diagnosis who experienced a short duration of disease control on entrectinib, a ROS1 TKI. At progression, the patient continued entrectinib and started sotorasib, a small molecule inhibitor of KRAS p.G12C. A patient-derived cell line generated at progression on entrectinib demonstrated improved TKI responsiveness when treated with entrectinib and sotorasib. Cell-line growth dependence on both ROS1 and KRAS p.G12C was further reflected in the distinct downstream signaling pathways activated by each driver. Clinical benefit was not observed with combined therapy of entrectinib and sotorasib possibly related to an evolving KRAS p.G12C amplification identified on repeated molecular testing. This case supports the need for broad molecular profiling in patients with metastatic NSCLC for potential therapeutic and prognostic information.

17.
Lung Cancer ; 178: 103-107, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36809719

RESUMO

INTRODUCTION: For extensive brain metastases (BrM) presentations arising from oncogene-addicted lung cancer, tyrosine kinase inhibitors (TKIs) with high response rates in the central nervous system (CNS) could potentially downstage the CNS disease burden, allowing for the avoidance of upfront whole-brain radiotherapy (WBRT) and the conversion of some patients into candidates for focal stereotactic radiosurgery (SRS). METHODS: We describe the outcomes of patients with ALK, EGFR, and ROS1-driven NSCLC with extensive BrM presentations (defined as > 10 BrMs or leptomeningeal disease) treated with upfront newer generation CNS-active TKIs alone, including osimertinib, alectinib, brigatinib, lorlatinib, and entrectinib, from 2012 to 2021 at our institution. All BrMs were contoured at study entry, best CNS response (nadir), and first CNS progression. RESULTS: Twelve patients met criteria including 6 with ALK, 3 with EGFR, and 3 with ROS1-driven NSCLC. The median number and volume of BrMs at presentation were 49 and 19.6 cm3, respectively. Eleven patients (91.7 %) achieved a CNS response by modified-RECIST criteria to upfront TKI (10 partial responses, 1 complete response, 1 stable disease) with nadir observed at a median of 5.1 months. At nadir, the median number and volume of BrMs were 5 (median 91.7 % reduction per-patient) and 0.3 cm3(median 96.5 % reduction per-patient), respectively. Eleven patients (91.6 %) developed subsequent CNS progression (7 local failures, 3 local + distant, 1 distant) at a median of 17.9 months. At CNS progression, the median number and volume of BrMs were 7 and 0.7 cm3, respectively. Seven patients (58.3 %) received salvage SRS and no patients received salvage WBRT. The median overall survival from initiation of TKI for the extensive BrM presentation was 43.2 months. CONCLUSION: In this initial case series, we describe CNS downstaging as a promising multidisciplinary treatment paradigm involving the upfront administration CNS-active systemic therapy and close MRI surveillance for extensive BrMs as a strategy to avoid upfront WBRT and to convert some patients into SRS candidates.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Vício Oncogênico , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/secundário , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Sistema Nervoso Central/patologia , Quinase do Linfoma Anaplásico/genética , Receptores ErbB/genética , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/secundário , Vício Oncogênico/genética , Resultado do Tratamento , Imageamento por Ressonância Magnética
18.
NPJ Precis Oncol ; 7(1): 15, 2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739466

RESUMO

Lung cancers bearing oncogenic EML4-ALK fusions respond to targeted tyrosine kinase inhibitors (TKIs; e.g., alectinib), with variation in the degree of shrinkage and duration of treatment (DOT). However, factors that control this response are not well understood. While the contribution of the immune system in mediating the response to immunotherapy has been extensively investigated, less is known regarding the contribution of immunity to TKI therapeutic responses. We previously demonstrated a positive association of a TKI-induced interferon gamma (IFNγ) transcriptional response with DOT in EGFR-mutant lung cancers. Herein, we used three murine models of EML4-ALK lung cancer to test the role for host immunity in the alectinib therapeutic response. The cell lines (EA1, EA2, EA3) were propagated orthotopically in the lungs of immunocompetent and immunodeficient mice and treated with alectinib. Tumor volumes were serially measured by µCT and immune cell content was measured by flow cytometry and multispectral immunofluorescence. Transcriptional responses to alectinib were assessed by RNAseq and secreted chemokines were measured by ELISA. All cell lines were similarly sensitive to alectinib in vitro and as orthotopic tumors in immunocompetent mice, exhibited durable shrinkage. However, in immunodeficient mice, all tumor models rapidly progressed on TKI therapy. In immunocompetent mice, EA2 tumors exhibited a complete response, whereas EA1 and EA3 tumors retained residual disease that rapidly progressed upon termination of TKI treatment. Prior to treatment, EA2 tumors had greater numbers of CD8+ T cells and fewer neutrophils compared to EA1 tumors. Also, RNAseq of cancer cells recovered from untreated tumors revealed elevated levels of CXCL9 and 10 in EA2 tumors, and higher levels of CXCL1 and 2 in EA1 tumors. Analysis of pre-treatment patient biopsies from ALK+ tumors revealed an association of neutrophil content with shorter time to progression. Combined, these data support a role for adaptive immunity in durability of TKI responses and demonstrate that the immune cell composition of the tumor microenvironment is predictive of response to alectinib therapy.

19.
Cancers (Basel) ; 14(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36139660

RESUMO

Patients with early-stage lung adenocarcinoma have a high risk of recurrent or metastatic disease despite undergoing curative intent therapy. We hypothesized that increased CD14+ cells within the tumor microenvironment (TME) could stratify patient outcomes. Immunohistochemistry for CD14 was performed on 189 specimens from patients with lung adenocarcinoma who underwent curative intent surgery. Outcomes and associations with clinical and pathologic variables were determined. In vitro studies utilized a coculture system to model the lung cancer TME containing CD14+ cells. Patients with high levels of TME CD14+ cells experienced a median overall survival of 5.5 years compared with 8.3 and 10.7 years for those with moderate or low CD14 levels, respectively (p < 0.001). Increased CD14+ cell tumor infiltration was associated with a higher stage at diagnosis and more positive lymph nodes at the time of surgery. This prognostic capacity remained even for patients with early-stage disease. Using an in vitro model system, we found that CD14+ cells reduced chemotherapy-induced cancer cell death. These data suggest that CD14+ cells are a biomarker for poor prognosis in early-stage lung adenocarcinoma and may promote tumor survival. CD14+ cell integration into the lung cancer TME can occur early in the disease and may be a promising new therapeutic avenue.

20.
BMC Res Notes ; 15(1): 215, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725622

RESUMO

OBJECTIVE: Multiplex immunohistochemistry (mIHC) and multiplexed ion beam imaging (MIBI) images are usually phenotyped using a manual thresholding process. The thresholding is prone to biases, especially when examining multiple images with high cellularity. RESULTS: Unsupervised cell-phenotyping methods including PhenoGraph, flowMeans, and SamSPECTRAL, primarily used in flow cytometry data, often perform poorly or need elaborate tuning to perform well in the context of mIHC and MIBI data. We show that, instead, semi-supervised cell clustering using Random Forests, linear and quadratic discriminant analysis are superior. We test the performance of the methods on two mIHC datasets from the University of Colorado School of Medicine and a publicly available MIBI dataset. Each dataset contains a bunch of highly complex images.


Assuntos
Biomarcadores Tumorais , Diagnóstico por Imagem , Análise por Conglomerados , Citometria de Fluxo , Imuno-Histoquímica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA