Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Chemistry ; 30(19): e202304236, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38265541

RESUMO

Cholesteric liquid crystal oligomers are an interesting class of temperature responsive structurally colored materials. However, the role of endcap molecules in these oligomers is rather unexplored. In this work, we demonstrate the role of endcap molecules on structural color stability and hypsochromic shift in temperature-responsive cholesteric liquid crystal oligomers. First, new liquid crystal monoacrylate endcap molecules are synthesized, which are then used to synthesize various cholesteric liquid crystal oligomers. In addition, cholesteric oligomers using commercial monoacrylate endcap molecules are also prepared. It is found that the molecular weight and the polydispersity of the oligomers can be tuned by the endcapping molecules. The oligomers are used to produce reflective, structurally colored coatings. It was found that the coatings using the commercial monoacrylate lose their color and crystallize over time, most likely due to the presence of crystalline dimers. The coatings containing the newly synthesized monoacrylate endcap molecules did not exhibit this crystallization, resulting in structurally colored coatings that remained stable over time. These latter coatings possessed temperature responsive hypochromic behavior, which makes them interesting for advanced optical applications.

2.
Chem Rev ; 122(5): 4946-4975, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-34428022

RESUMO

Hydrogen-bonded liquid crystalline polymers have emerged as promising "smart" supramolecular functional materials with stimuli-responsive, self-healing, and recyclable properties. The hydrogen bonds can either be used as chemically responsive (i.e., pH-responsive) or as dynamic structural (i.e., temperature-responsive) moieties. Responsiveness can be manifested as changes in shape, color, or porosity and as selective binding. The liquid crystalline self-organization gives the materials their unique responsive nanostructures. Typically, the materials used for actuators or optical materials are constructed using linear calamitic (rod-shaped) hydrogen-bonded complexes, while nanoporous materials are constructed from either calamitic or discotic (disk-shaped) complexes. The dynamic structural character of the hydrogen bond moieties can be used to construct self-healing and recyclable supramolecular materials. In this review, recent findings are summarized, and potential future applications are discussed.


Assuntos
Cristais Líquidos , Materiais Inteligentes , Hidrogênio , Ligação de Hidrogênio , Cristais Líquidos/química , Polímeros/química
3.
J Am Chem Soc ; 145(35): 19347-19353, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37609696

RESUMO

Charge transfer complexes (CTCs) based on self-assembled donor and acceptor molecules allow light absorption of significantly redshifted wavelengths to either the donor or acceptor. In this work, we demonstrate a CTC embedded in a hydrogen-bonded liquid crystal elastomer (LCE), which in itself is fully reformable and reprocessable. The LCE host acts as a gate, directing the self-assembly of the CTC. When hydrogen bonding is present, the CTC behaves as a near-infrared (NIR) dye allowing photothermal actuation of the LCE. The CTC can be disassembled in specific regions of the LCE film by disrupting the hydrogen bond interactions, allowing selective NIR heating and localized actuation of the films. The metastable non-CTC state may persist for weeks or can be recovered on demand by heat treatment. Besides the CTC variability, the capability of completely reforming the shape, color, and actuation mode of the LCE provides an interactive material with unprecedented application versatility.

4.
Small ; 19(30): e2302051, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37189212

RESUMO

While dynamic surface topographies are fabricated using liquid crystal (LC) polymers, switching between two distinct 3D topographies remains challenging. In this work, two switchable 3D surface topographies are created in LC elastomer (LCE) coatings using a two-step imprint lithography process. A first imprinting creates a surface microstructure on the LCE coating which is polymerized by a base catalyzed partial thiol-acrylate crosslinking step. The structured coating is then imprinted with a second mold to program the second topography, which is subsequently fully polymerized by light. The resulting LCE coatings display reversible surface switching between the two programmed 3D states. By varying the molds used during the two imprinting steps, diverse dynamic topographies can be achieved. For example, by using grating and rough molds sequentially, switchable surface topographies between a random scatterer and an ordered diffractor are achieved. Additionally, by using negative and positive triangular prism molds consecutively, dynamic surface topographies switching between two 3D structural states are achieved, driven by differential order/disorder transitions in the different areas of the film. It is anticipated that this platform of dynamic 3D topological switching can be used for many applications, including antifouling and biomedical surfaces, switchable friction elements, tunable optics, and beyond.

5.
Small ; 19(20): e2207095, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36793159

RESUMO

Liquid crystalline polymers are attractive materials for untethered miniature soft robots. When they contain azo dyes, they acquire light-responsive actuation properties. However, the manipulation of such photoresponsive polymers at the micrometer scale remains largely unexplored. Here, uni- and bidirectional rotation and speed control of polymerized azo-containing chiral liquid crystalline photonic microparticles powered by light is reported. The rotation of these polymer particles is first studied in an optical trap experimentally and theoretically. The micro-sized polymer particles respond to the handedness of a circularly polarized trapping laser due to their chirality and exhibit uni- and bidirectional rotation depending on their alignment within the optical tweezers. The attained optical torque causes the particles to spin with a rotation rate of several hertz. The angular speed can be controlled by small structural changes, induced by ultraviolet (UV) light absorption. After switching off the UV illumination, the particle recovers its rotation speed. The results provide evidence of uni- and bidirectional motion and speed control in light-responsive polymer particles and offer a new way to devise light-controlled rotary microengines at the micrometer scale.

6.
Chemistry ; 29(36): e202300648, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37051945

RESUMO

Multi-stimuli responsivity in 3D-printed objects is receiving much attention. However, the simultaneous interplay between different environmental stimuli is largely unexplored. In this work, we demonstrate direct ink writing of an oligomeric ink containing an azobenzene photo-switch with an accessible hydrogen bond allowing triple responsivity to light, heat, and water. The resulting printed liquid crystal elastomer performs multiple actuations, the specific response depending on the environmental conditions. Bilayer films formed by printing on a static substrate can rapidly change shape, bending almost 80 degrees if irradiated in air or undergoing a shrinkage of about 50 % of its length when heated. The bilayer film assumes dramatically different shapes in water depending on combined environmental temperature and lighting conditions.

7.
Soft Matter ; 19(3): 361-365, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36625272

RESUMO

Multifunctional e-skins provide information on physiological and environmental parameters. However, the development and fabrication of such devices is challenging. Here, structural coloured electronic skins are presented, which are prepared via scalable methods that can simultaneously monitor the skin temperature and body motion when patched onto the human skin.


Assuntos
Pele , Dispositivos Eletrônicos Vestíveis , Humanos , Temperatura , Eletrônica , Movimento (Física)
8.
Proc Natl Acad Sci U S A ; 117(30): 17571-17577, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32661153

RESUMO

The development of light-responsive materials has captured scientific attention and advanced the development of wirelessly driven terrestrial soft robots. Marine organisms trigger inspiration to expand the paradigm of untethered soft robotics into aqueous environments. However, this expansion toward aquatic soft robots is hampered by the slow response of most light-driven polymers to low light intensities and by the lack of controlled multishape deformations. Herein, we present a surface-anchored artificial aquatic coral polyp composed of a magnetically driven stem and a light-driven gripper. Through magnetically driven motion, the polyp induces stirring and attracts suspended targets. The light-responsive gripper is sensitive to low light intensities and has programmable states and rapid and highly controlled actuation, allowing the polyp to capture or release targets on demand. The artificial polyp demonstrates that assemblies of stimuli-responsive materials in water utilizing coordinated motion can perform tasks not possible for single-component devices.

9.
Chemistry ; 27(57): 14168-14178, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34320258

RESUMO

Liquid-crystalline polymer particles prepared by classical polymerization techniques are receiving increased attention as promising candidates for use in a variety of applications including micro-actuators, structurally colored objects, and absorbents. These particles have anisotropic molecular order and liquid-crystalline phases that distinguish them from conventional polymer particles. In this minireview, the preparation of liquid-crystalline polymer particles from classical suspension, (mini-)emulsion, dispersion, and precipitation polymerization reactions are discussed. The particle sizes, molecular orientations, and liquid-crystalline phases produced by each technique are summarized and compared. We conclude with a discussion of the challenges and prospects of the preparation of liquid-crystalline polymer particles by classical polymerization techniques.

10.
Macromol Rapid Commun ; 42(14): e2100157, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33938066

RESUMO

Untethered, light-responsive, high-stress-generating actuators based on widely-used commercial polymers are appealing for applications in soft robotics. However, the construction of actuators that are stable and reversibly responsive to low-intensity ultraviolet, visible, and infrared lights remains challenging. Here, transparent, stress-generating actuators are reported based on ultradrawn, ultrahigh molecular weight polyethylene films. The composite films have different draw ratios (30, 70, and 100) and contain a small amount of graphene in combination with ultraviolet and near-infrared-absorbing dyes. The composite actuators respond rapidly (t0.9 < 0.8 s) to different wavelengths of light (i.e., 780, 455, and 365 nm). A maximum photoinduced stress of 35 MPa is achieved at a draw ratio of 70 under near-infrared light irradiation. The photoinduced stress increases linearly with the light intensity, indicating the transfer of light into thermally induced mechanical contraction. Moreover, the addition of additives lead to a reduction in the plastic creep rate of the drawn films compared to their nonmodified counterparts.


Assuntos
Grafite , Polímeros , Raios Infravermelhos , Plásticos , Raios Ultravioleta
11.
Angew Chem Int Ed Engl ; 60(52): 27026-27030, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34672077

RESUMO

We report on the synthesis of monodisperse, flower-like, liquid crystalline (LC) polymer particles by precipitation polymerization of a LC mixture consisting of benzoic acid-functionalized acrylates and disulfide-functionalized diacrylates. Introduction of a minor amount of redox-responsive disulfide-functionalized diacrylates (≤10 wt %) induced the formation of flower-like shapes. The shape of the particles can be tuned from flower- to disk-like to spherical by elevating the polymerization temperature. The solvent environment also has a pronounced effect on the particle size. Time-resolved TEM reveals that the final particle morphology was formed in the early stages of the polymerization and that subsequent polymerization resulted in continued particle growth without affecting the morphology. Finally, the degradation of the particles under reducing conditions was much faster for flower-like particles than for spherical particles, likely a result of their higher surface-to-volume ratio.

12.
Angew Chem Int Ed Engl ; 60(19): 10935-10941, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33620140

RESUMO

We report on the wavelength-selective photopolymerization of a hybrid acrylate-oxetane cholesteric liquid crystal monomer mixture. By controlling the sequence and rate of the orthogonal free-radical and cationic photopolymerization reactions, it is possible to control the degree of phase separation in the resulting liquid crystal interpenetrating networks. We show that this can be used to tune the reflective color of the structurally colored coatings produced. Conversely, the structural color can be used to monitor the degree of phase separation. Our new photopolymerization procedure allows for structuring liquid crystal networks in three dimensions, which has great potential for fabricating liquid crystal polymer materials with programmable functional properties.

13.
Soft Matter ; 16(22): 5106-5119, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32459272

RESUMO

Liquid crystalline elastomers (LCEs) and liquid crystalline networks (LCNs) are classes of polymers very suitable for fabricating advanced functional materials. Two main pathways to obtain LCEs and LCNs have gained the most attention in the literature, namely the two-step crosslinking of LC side-chain polymers and the photoinitiated free-radical polymerisation of acrylate LC monomers. These liquid crystal polymers have demonstrated remarkable properties resulting from their anisotropic shapes, being used in soft robotics, responsive surfaces and as photonic materials. In this review, we will show that LCs with cyclic ethers as polymerisable groups can be an attractive alternative to the aforementioned reactive acrylate mesogens. These epoxide and oxetane based reactive mesogens could offer a number of advantages over their acrylate-based counterparts, including oxygen insensitivity, reduced polymerisation shrinkage, improved alignment, lower processing viscosity and potentially extended resistivity. In this review, we summarise the research on these materials from the past 30 years and offer a glimpse into the potential of these cyclic ether mesogens.

14.
Soft Matter ; 16(21): 4908-4911, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32452499

RESUMO

Narrowly dispersed, 10 micron-sized, liquid crystalline elastomer polymer actuators were first prepared via thiol-ene dispersion polymerization and then embedded and stretched in a polyvinyl alcohol film, followed by photopolymerization of the residual acrylate groups. Prolate micro spheroids in which the mesogens are aligned parallel to the long axis were obtained and showed reversible thermally driven actuation owing to nematic to isotropic transition of the liquid crystal molecules. The particles were also compressed to form disk-shaped oblate microactuators in which the mesogens are aligned perpendicular to the short axis, demonstrating that the reported method is a versatile method to fabricate liquid crystal elastomer microactuators with programmable properties.

15.
Angew Chem Int Ed Engl ; 59(11): 4532-4536, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-31922315

RESUMO

Arbitrary shape (re)programming is appealing for fabricating untethered shape-morphing photo-actuators with intricate configurations and features. We present re-programmable light-responsive thermoplastic actuators with arbitrary initial shapes through spray-coating of polyethylene terephthalate (PET) with an azobenzene-doped light-responsive liquid crystal network (LCN). The initial geometry of the actuator is controlled by thermally shaping and fixing the thermoplastic PET, allowing arbitrary shapes, including origami-like folds and left- and right-handed helicity within a single sample. The thermally fixed geometries can be reversibly actuated through light exposure, with fast, reversible area-specific actuation such as winding, unwinding and unfolding. By shape re-programming, the same sample can be re-designed and light-actuated again. The strategy presented here demonstrates easy fabrication of mechanically robust, recyclable, photo-responsive actuators with highly tuneable geometries and actuation modes.

16.
Nat Mater ; 22(9): 1053-1054, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37550569
17.
Nature ; 481(7382): 492-6, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22258506

RESUMO

Self-assembly provides an attractive route to functional organic materials, with properties and hence performance depending sensitively on the organization of the molecular building blocks. Molecular organization is a direct consequence of the pathways involved in the supramolecular assembly process, which is more amenable to detailed study when using one-dimensional systems. In the case of protein fibrils, formation and growth have been attributed to complex aggregation pathways that go beyond traditional concepts of homogeneous and secondary nucleation events. The self-assembly of synthetic supramolecular polymers has also been studied and even modulated, but our quantitative understanding of the processes involved remains limited. Here we report time-resolved observations of the formation of supramolecular polymers from π-conjugated oligomers. Our kinetic experiments show the presence of a kinetically favoured metastable assembly that forms quickly but then transforms into the thermodynamically favoured form. Quantitative insight into the kinetic experiments was obtained from kinetic model calculations, which revealed two parallel and competing pathways leading to assemblies with opposite helicity. These insights prompt us to use a chiral tartaric acid as an auxiliary to change the thermodynamic preference of the assembly process. We find that we can force aggregation completely down the kinetically favoured pathway so that, on removal of the auxiliary, we obtain only metastable assemblies.


Assuntos
Polimerização , Polímeros/química , Ligação Competitiva , Dicroísmo Circular , Cinética , Modelos Moleculares , Proteínas/química , Tartaratos/química , Termodinâmica
18.
Chemistry ; 23(51): 12534-12541, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28707452

RESUMO

Thermotropic smectic liquid crystalline polymers were used as a scaffold to create organic/inorganic hybrid layered nanomaterials. Different polymers were prepared by photopolymerizing blends of a hydrogen bonded carboxylic acid derivative and a 10 % cross-linker of variable length in their liquid crystalline phase. Nanopores with dimensions close to 1 nm were generated by breaking the hydrogen bonded dimers in a high pH solution. The pores were filled with positively charged silver (Ag) ions, resulting in a layered silver(I)-polymeric hybrid material. Subsequent exposure to a NaBH4 reducing solution allowed for the formation of supported hybrid metal/organic films. In the bulk of the film the dimension of the Ag nanoparticles (NPs) was regulated with subnanometer precision by the cross-linker length. Ag nanoparticles with an average size of 0.9, 1.3, and 1.8 nm were produced inside the nanopores thanks to the combined effect of spatially confined reduction and stabilization of the nanoparticles by the polymer carboxylic groups. At the same time, strong Ag migration occurred in the surface region, resulting in the formation of a nanostructured metallic top layer composed of large (10-20 nm) NPs.

19.
ACS Appl Mater Interfaces ; 16(11): 14144-14151, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38448425

RESUMO

Sticky-colored labels are an efficient way to communicate visual information. However, most labels are static. Here, we propose a new category of dynamic sticky labels that change structural colors when stretched. The sticky mechanochromic labels can be pasted on flexible surfaces such as fabric and rubber or even on brittle materials. To enhance their applicability, we demonstrate a simple method for imprinting structural color patterns that are either always visible or reversibly revealed or concealed upon mechanical deformation. The mechanochromic patterns are imprinted with a photomask during the ultraviolet (UV) cross-linking of acrylate-terminated cholesteric liquid crystal oligomers in a single step at room temperature. The photomask locally controls the cross-linking degree and volumetric response of the cholesteric liquid crystal elastomers (CLCEs). A nonuniform thickness change induced by the Poisson's ratio contrast between the pattern and the surrounding background might lead to a color-separation effect. Our sticky multicolor mechanochromic labels may be utilized in stress-strain sensing, building environments, smart clothing, security labels, and decoration.

20.
Adv Mater ; : e2402559, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627932

RESUMO

Liquid crystal elastomer (LCE) actuators are generally limited in shape, size, and quantity by the need for aligning via stretching and fixing via photopolymerizing. A thermoplastic LCE is presented that may be vacuum thermoformed into centimeter-sized hemispheres. The scalable industrial process induces LCE alignment without requiring postfixing. The hemispheres display remarkable properties, actuating with strains around 20% and transitioning from opaque and scattering to highly translucent upon heating: both the physical and optical effects are fully reversible. Simulations reveal the LCE experiences biaxial strains during processing, the magnitude varying as a function of location on the hemisphere: the resulting alignment describing the hemisphere actuation well. The thermoplastic LCE hemispheres may be combined to form complete spheres by simply heating the joint. The hemisphere can also be physically deformed into a ball which can then unfold back into the hemisphere again. By doping the hemispheres with photoswitches, fluorescent or photothermal dyes, devices are formed for light collection and redistribution, addressable water containers that may pour at will, and light-responsive surfing devices. This is the first example of an LCE amenable to high-volume industrial vacuum thermoforming which may lead to intricate 3D-shaped actuators with new functional properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA