Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
PLoS Pathog ; 14(8): e1007249, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30133543

RESUMO

The complex life-cycle of the human malaria parasite Plasmodium falciparum requires a high degree of tight coordination allowing the parasite to adapt to changing environments. One of the major challenges for the parasite is the human-to-mosquito transmission, which starts with the differentiation of blood stage parasites into the transmissible gametocytes, followed by the rapid conversion of the gametocytes into gametes, once they are taken up by the blood-feeding Anopheles vector. In order to pre-adapt to this change of host, the gametocytes store transcripts in stress granules that encode proteins needed for parasite development in the mosquito. Here we report on a novel stress granule component, the seven-helix protein 7-Helix-1. The protein, a homolog of the human stress response regulator LanC-like 2, accumulates in stress granules of female gametocytes and interacts with ribonucleoproteins, such as CITH, DOZI, and PABP1. Malaria parasites lacking 7-Helix-1 are significantly impaired in female gametogenesis and thus transmission to the mosquito. Lack of 7-Helix-1 further leads to a deregulation of components required for protein synthesis. Consistently, inhibitors of translation could mimic the 7-Helix-1 loss-of-function phenotype. 7-Helix-1 forms a complex with the RNA-binding protein Puf2, a translational regulator of the female-specific antigen Pfs25, as well as with pfs25-coding mRNA. In accord, gametocytes deficient of 7-Helix-1 exhibit impaired Pfs25 synthesis. Our data demonstrate that 7-Helix-1 constitutes stress granules crucial for regulating the synthesis of proteins needed for life-cycle progression of Plasmodium in the mosquito vector.


Assuntos
Anopheles/parasitologia , Malária Falciparum/transmissão , Proteínas de Membrana/fisiologia , Plasmodium falciparum , Biossíntese de Proteínas , Animais , Grânulos Citoplasmáticos/metabolismo , Feminino , Humanos , Estágios do Ciclo de Vida/genética , Malária Falciparum/parasitologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Organismos Geneticamente Modificados , Proteínas de Ligação a Fosfato , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Biossíntese de Proteínas/genética , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/fisiologia , Homologia de Sequência , Estresse Fisiológico
2.
BMC Biotechnol ; 15: 108, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26625934

RESUMO

BACKGROUND: Despite the limited success after decades of intensive research and development efforts, vaccination still represents the most promising strategy to significantly reduce the disease burden in malaria endemic regions. Besides the ultimate goal of inducing sterile protection in vaccinated individuals, the prevention of transmission by so-called transmission blocking vaccines (TBVs) is being regarded as an important feature of an efficient malaria eradication strategy. Recently, Plasmodium falciparum GAP50 (PfGAP50), a 44.6 kDa transmembrane protein that forms an essential part of the invasion machinery (glideosome) multi-protein complex, has been proposed as novel potential transmission-blocking candidate. Plant-based expression systems combine the advantages of eukaryotic expression with a up-scaling potential and a good product safety profile suitable for vaccine production. In this study we investigated the feasibility to use the transient plant expression to produce PfGAP50 suitable for the induction of parasite specific inhibitory antibodies. RESULTS: We performed the transient expression of recombinant PfGAP50 in Nicotiana benthamiana leaves using endoplasmatic reticulum (ER) and plastid targeting. After IMAC-purification the protein yield and integrity was investigated by SDS-PAGE and Western Blot. Rabbit immune IgG derived by the immunization with the plastid-targeted variant of PfGAP50 was analyzed by immune fluorescence assay (IFA) and zygote inhibition assay (ZIA). PfGAP50 could be produced in both subcellular compartments at different yields IMAC (Immobilized Metal Affinity Chromatography) purification from extract yielded up to 4.1 µg/g recombinant protein per fresh leaf material for ER-retarded and16.2 µg/g recombinant protein per fresh leave material for plasmid targeted PfGAP50, respectively. IgG from rabbit sera generated by immunization with the recombinant protein specifically recognized different parasite stages in immunofluorescence assay. Furthermore up to 55 % inhibition in an in vitro zygote inhibition assay could be achieved using PfGAP50-specific rabbit immune IgG. CONCLUSIONS: The results of this study demonstrate that the plant-produced PfGAP50 is functional regarding the presentation of inhibitory epitopes and could be considered as component of a transmission-blocking malaria vaccine formulation.


Assuntos
Biotecnologia/métodos , Vacinas Antimaláricas/genética , Malária/prevenção & controle , Proteínas de Membrana/biossíntese , Nicotiana/metabolismo , Plasmodium falciparum/genética , Animais , Western Blotting , Eletroforese em Gel de Poliacrilamida , Técnica Direta de Fluorescência para Anticorpo , Imunoglobulina G/imunologia , Vacinas Antimaláricas/imunologia , Proteínas de Membrana/genética , Coelhos
3.
Plant Biotechnol J ; 13(2): 222-34, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25236489

RESUMO

One of the most promising malaria vaccine candidate antigens is the Plasmodium falciparum apical membrane antigen 1 (PfAMA1). Several studies have shown that this blood-stage antigen can induce strong parasite growth inhibitory antibody responses. PfAMA1 contains up to six recognition sites for N-linked glycosylation, a post-translational modification that is absent in P. falciparum. To prevent any potential negative impact of N-glycosylation, the recognition sites have been knocked out in most PfAMA1 variants expressed in eukaryotic hosts. However, N-linked glycosylation may increase efficacy by improving immunogenicity and/or focusing the response towards relevant epitopes by glycan masking. We describe the production of glycosylated and nonglycosylated PfAMA1 in Nicotiana benthamiana and its detailed characterization in terms of yield, integrity and protective efficacy. Both PfAMA1 variants accumulated to high levels (>510 µg/g fresh leaf weight) after transient expression, and high-mannose-type N-glycans were confirmed for the glycosylated variant. No significant differences between the N. benthamiana and Pichia pastoris PfAMA1 variants were detected in conformation-sensitive ligand-binding studies. Specific titres of >2 × 10(6) were induced in rabbits, and strong reactivity with P. falciparum schizonts was observed in immunofluorescence assays, as well as up to 100% parasite growth inhibition for both variants, with IC50 values of ~35 µg/mL. Competition assays indicated that a number of epitopes were shielded from immune recognition by N-glycans, warranting further studies to determine how glycosylation can be used for the directed targeting of immune responses. These results highlight the potential of plant transient expression systems as a production platform for vaccine candidates.


Assuntos
Antígenos de Protozoários/metabolismo , Vacinas Antimaláricas/imunologia , Proteínas de Membrana/metabolismo , Nicotiana/genética , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/metabolismo , Animais , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Glicosilação , Soros Imunes , Imunização , Imunoglobulina G/metabolismo , Merozoítos/metabolismo , Modelos Moleculares , Parasitos/metabolismo , Pichia , Plantas Geneticamente Modificadas , Polissacarídeos/metabolismo , Coelhos , Ressonância de Plasmônio de Superfície
4.
Cell Microbiol ; 16(5): 709-33, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24602217

RESUMO

Egress of malaria parasites from the host cell requires the concerted rupture of its enveloping membranes. Hence, we investigated the role of the plasmodial perforin-like protein PPLP2 in the egress of Plasmodium falciparum from erythrocytes. PPLP2 is expressed in blood stage schizonts and mature gametocytes. The protein localizes in vesicular structures, which in activated gametocytes discharge PPLP2 in a calcium-dependent manner. PPLP2 comprises a MACPF domain and recombinant PPLP2 has haemolytic activities towards erythrocytes. PPLP2-deficient [PPLP2(-)] merozoites show normal egress dynamics during the erythrocytic replication cycle, but activated PPLP2(-) gametocytes were unable to leave erythrocytes and stayed trapped within these cells. While the parasitophorous vacuole membrane ruptured normally, the activated PPLP2(-) gametocytes were unable to permeabilize the erythrocyte membrane and to release the erythrocyte cytoplasm. In consequence, transmission of PPLP2(-) parasites to the Anopheles vector was reduced. Pore-forming equinatoxin II rescued both PPLP2(-) gametocyte exflagellation and parasite transmission. The pore sealant Tetronic 90R4, on the other hand, caused trapping of activated wild-type gametocytes within the enveloping erythrocytes, thus mimicking the PPLP2(-) loss-of-function phenotype. We propose that the haemolytic activity of PPLP2 is essential for gametocyte egress due to permeabilization of the erythrocyte membrane and depletion of the erythrocyte cytoplasm.


Assuntos
Permeabilidade da Membrana Celular , Membrana Celular/fisiologia , Eritrócitos/fisiologia , Eritrócitos/parasitologia , Perforina/metabolismo , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/metabolismo , Técnicas de Inativação de Genes , Plasmodium falciparum/genética , Proteínas de Protozoários/genética
5.
Biotechnol Bioeng ; 112(7): 1297-305, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25615702

RESUMO

Malaria is a vector-borne disease affecting more than two million people and accounting for more than 600,000 deaths each year, especially in developing countries. The most serious form of malaria is caused by Plasmodium falciparum. The complex life cycle of this parasite, involving pre-erythrocytic, asexual and sexual stages, makes vaccine development cumbersome but also offers a broad spectrum of vaccine candidates targeting exactly those stages. Vaccines targeting the sexual stage of P. falciparum are called transmission-blocking vaccines (TBVs). They do not confer protection for the vaccinated individual but aim to reduce or prevent the transmission of the parasite within a population and are therefore regarded as an essential tool in the fight against the disease. Malaria predominantly affects large populations in developing countries, so TBVs need to be produced in large quantities at low cost. Combining the advantages of eukaryotic expression with a virtually unlimited upscaling potential and a good product safety profile, plant-based expression systems represent a suitable alternative for the production of TBVs. We report here the high level (300 µg/g fresh leaf weight (FLW)) transient expression in Nicotiana benthamiana leaves of an effective TBV candidate based on a fusion protein F0 comprising Pfs25 and the C0-domain of Pfs230, and the implementation of a simple and cost-effective heat treatment step for purification that yields intact recombinant protein at >90% purity with a recovery rate of >70%. The immunization of mice clearly showed that antibodies raised against plant-derived F0 completely blocked the formation of oocysts in a malaria transmission-blocking assay (TBA) making F0 an interesting TBV candidate or a component of a multi-stage malaria vaccine cocktail.


Assuntos
Antígenos de Protozoários/isolamento & purificação , Precipitação Fracionada , Vacinas Antimaláricas/isolamento & purificação , Nicotiana/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Protozoários/isolamento & purificação , Proteínas Recombinantes de Fusão/isolamento & purificação , Animais , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/metabolismo , Temperatura Alta , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/metabolismo , Camundongos , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Nicotiana/genética , Vacinação/métodos
6.
Biotechnol Bioeng ; 112(4): 659-67, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25335451

RESUMO

We demonstrated the successful optimization of a recombinant multi-subunit malaria vaccine candidate protein for production in the methylotrophic yeast Pichia pastoris by the identification and subsequent removal of two protease cleavage sites. After observing protein degradation in the culture supernatant of a fed-batch fermentation, the predominant proteolytic fragment of the secreted recombinant protein was analyzed by mass spectrometry. The MS data indicated the cleavage of an amino acid sequence matching the yeast KEX2-protease consensus motif EKRE. The cleavage in this region was completely abolished by the deletion of the EKRE motif in a modified variant. This modified variant was produced, purified, and used for immunization of rabbits, inducing high antigen specific antibody titers (2 × 10(6) ). Total IgG from rabbit immune sera recognized different stages of Plasmodium falciparum parasites in immunofluorescence assays, indicating native folding of the vaccine candidate. However, the modified variant was still degraded, albeit into different fragments. Further analysis by mass spectrometry and N-terminal sequencing revealed a second cleavage site downstream of the motif PEVK. We therefore removed a 17-amino-acid stretch including the PEVK motif, resulting in the subsequent production of the full-length recombinant vaccine candidate protein without significant degradation, with a yield of 53 mg per liter culture volume. We clearly demonstrate that the proteolytic degradation of recombinant proteins by endogenous P. pastoris proteases can be prevented by the identification and removal of such cleavage sites. This strategy is particularly relevant for the production of recombinant subunit vaccines, where product yield and stability play a more important role than for the production of a stringently-defined native sequence which is necessary for most therapeutic molecules.


Assuntos
Vacinas Antimaláricas/biossíntese , Vacinas Antimaláricas/isolamento & purificação , Peptídeo Hidrolases/metabolismo , Animais , Anticorpos Antiprotozoários/sangue , Sítios de Ligação , Biotecnologia/métodos , Técnica Direta de Fluorescência para Anticorpo , Imunização/métodos , Imunoglobulina G/sangue , Vacinas Antimaláricas/química , Vacinas Antimaláricas/genética , Espectrometria de Massas , Camundongos , Proteínas Mutantes/biossíntese , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/isolamento & purificação , Pichia/genética , Pichia/metabolismo , Plasmodium falciparum/imunologia , Proteólise , Coelhos , Deleção de Sequência , Tecnologia Farmacêutica/métodos , Vacinas Sintéticas/biossíntese , Vacinas Sintéticas/química , Vacinas Sintéticas/genética , Vacinas Sintéticas/isolamento & purificação
7.
BMC Genomics ; 14: 256, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23586929

RESUMO

BACKGROUND: The transmission of the malaria parasite Plasmodium falciparum from the human to the mosquito is mediated by dormant sexual precursor cells, the gametocytes, which become activated in the mosquito midgut. Because gametocytes are the only parasite stages able to establish an infection in the mosquito, they play a crucial role in spreading the tropical disease. The human-to-mosquito transmission triggers important molecular changes in the gametocytes, which initiate gametogenesis and prepare the parasite for life-cycle progression in the insect vector. RESULTS: To better understand gene regulations during the initial phase of malaria parasite transmission, we focused on the transcriptome changes that occur within the first half hour of parasite development in the mosquito. Comparison of mRNA levels of P. falciparum gametocytes before and 30 min following activation using suppression subtractive hybridization (SSH) identified 126 genes, which changed in expression during gametogenesis. Among these, 17.5% had putative functions in signaling, 14.3% were assigned to cell cycle and gene expression, 8.7% were linked to the cytoskeleton or inner membrane complex, 7.9% were involved in proteostasis and 6.4% in metabolism, 12.7% were cell surface-associated proteins, 11.9% were assigned to other functions, and 20.6% represented genes of unknown function. For 40% of the identified genes there has as yet not been any protein evidence.For a subset of 27 genes, transcript changes during gametogenesis were studied in detail by real-time RT-PCR. Of these, 22 genes were expressed in gametocytes, and for 15 genes transcript expression in gametocytes was increased compared to asexual blood stage parasites. Transcript levels of seven genes were particularly high in activated gametocytes, pointing at functions downstream of gametocyte transmission to the mosquito. For selected genes, a regulated expression during gametogenesis was confirmed on the protein level, using quantitative confocal microscopy. CONCLUSIONS: The obtained transcriptome data demonstrate the regulations of gene expression immediately following malaria parasite transmission to the mosquito. Our findings support the identification of proteins important for sexual reproduction and further development of the mosquito midgut stages and provide insights into the genetic basis of the rapid adaption of Plasmodium to the insect vector.


Assuntos
Gametogênese/genética , Malária Falciparum/transmissão , Plasmodium falciparum/genética , Proteínas de Protozoários/biossíntese , Transcriptoma , Animais , Regulação da Expressão Gênica , Biblioteca Gênica , Genes de Protozoários/genética , Humanos , Insetos Vetores/genética , Proteínas de Protozoários/genética
8.
Mol Biochem Parasitol ; 201(2): 90-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26166358

RESUMO

The genomes of Plasmodium parasites encode for five perforin-like proteins, PPLP1-5, and four of them have previously been demonstrated to be involved in disruption of host cell barriers. We now show that the fifth perforin, PPLP4, is crucial for infection of the mosquito vector by Plasmodium falciparum parasites. PPLP4 is expressed in the blood and mosquito midgut stages in granular structures. In gametocytes, PPLP4 expression is specific to the female gender, while ookinetes show a PPLP4 localization at the apical pole. Gene disruption of pplp4 results in no phenotypical change during blood stage replication, gametocyte development or gametogenesis, while mosquitoes fed with PPLP4-deficient gametocytes display a severe reduction in oocyst numbers, and an accumulation of ookinetes in the mosquito midguts was observed. In conclusion, we propose an essential role for PPLP4 in infection of the mosquito midgut, presumably by mediating ookinete traversal through the midgut epithelium.


Assuntos
Culicidae/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Trato Gastrointestinal/parasitologia , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas de Protozoários/genética
9.
Biotechnol J ; 10(10): 1651-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25913888

RESUMO

Multicomponent vaccines targeting different stages of Plasmodium falciparum represent a promising, holistic concept towards better malaria vaccines. Additionally, an effective vaccine candidate should demonstrate cross-strain specificity because many antigens are polymorphic, which can reduce vaccine efficacy. A cocktail of recombinant fusion proteins (VAMAX-Mix) featuring three diversity-covering variants of the blood-stage antigen PfAMA1, each combined with the conserved sexual-stage antigen Pfs25 and one of the pre-erythrocytic-stage antigens PfCSP_TSR or PfCelTOS, or the additional blood-stage antigen PfMSP1_19, was produced in Pichia pastoris and used to immunize rabbits. The immune sera and purified IgG were used to perform various assays determining antigen specific titers and in vitro efficacy against different parasite stages and strains. In functional in vitro assays we observed robust inhibition of blood-stage (up to 90%), and sexual-stage parasites (up to 100%) and biased inhibition of pre-erythrocytic parasites (0-40%). Cross-strain blood-stage efficacy was observed in erythrocyte invasion assays using four different P. falciparum strains. The quantification of antigen-specific IgGs allowed the determination of specific IC50 values. The significant difference in antigen-specific IC50 requirements, the direct correlation between antigen-specific IgG and the relative quantitative representation of antigens within the cocktail, provide valuable implementations for future multi-stage, multi-component vaccine designs.


Assuntos
Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária/imunologia , Plasmodium falciparum/imunologia , Proteínas Recombinantes de Fusão/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Anticorpos Antiprotozoários/uso terapêutico , Antígenos de Protozoários/genética , Eritrócitos/imunologia , Eritrócitos/parasitologia , Humanos , Malária/parasitologia , Malária/prevenção & controle , Vacinas Antimaláricas/uso terapêutico , Pichia/genética , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Coelhos , Proteínas Recombinantes de Fusão/uso terapêutico
10.
PLoS One ; 10(7): e0131456, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26147206

RESUMO

Combining key antigens from the different stages of the P. falciparum life cycle in the context of a multi-stage-specific cocktail offers a promising approach towards the development of a malaria vaccine ideally capable of preventing initial infection, the clinical manifestation as well as the transmission of the disease. To investigate the potential of such an approach we combined proteins and domains (11 in total) from the pre-erythrocytic, blood and sexual stages of P. falciparum into a cocktail of four different components recombinantly produced in plants. After immunization of rabbits we determined the domain-specific antibody titers as well as component-specific antibody concentrations and correlated them with stage specific in vitro efficacy. Using purified rabbit immune IgG we observed strong inhibition in functional in vitro assays addressing the pre-erythrocytic (up to 80%), blood (up to 90%) and sexual parasite stages (100%). Based on the component-specific antibody concentrations we calculated the IC50 values for the pre-erythrocytic stage (17-25 µg/ml), the blood stage (40-60 µg/ml) and the sexual stage (1.75 µg/ml). While the results underline the feasibility of a multi-stage vaccine cocktail, the analysis of component-specific efficacy indicates significant differences in IC50 requirements for stage-specific antibody concentrations providing valuable insights into this complex scenario and will thereby improve future approaches towards malaria vaccine cocktail development regarding the selection of suitable antigens and the ratios of components, to fine tune overall and stage-specific efficacy.


Assuntos
Anticorpos Antiprotozoários/sangue , Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Animais , Imunização , Malária Falciparum/imunologia , Coelhos
11.
Biotechnol J ; 9(11): 1435-45, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25200253

RESUMO

Plants have emerged as low-cost production platforms suitable for vaccines targeting poverty-related diseases. Besides functional efficacy, the stability, yield, and purification process determine the production costs of a vaccine and thereby the feasibility of plant-based production. We describe high-level plant production and functional characterization of a malaria vaccine candidate targeting the pre-erythrocytic stage of Plasmodium falciparum. CCT, a fusion protein composed of three sporozoite antigens (P. falciparum cell traversal protein for ookinetes and sporozoites [PfCelTOS], P. falciparum circumsporozoite protein [PfCSP], and P. falciparum thrombospondin-related adhesive protein [PfTRAP]), was transiently expressed by agroinfiltration in Nicotiana benthamiana leaves, accumulated to levels up to 2 mg/g fresh leaf weight (FLW), was thermostable up to 80°C and could be purified to >95% using a simple two-step procedure. Reactivity of sera from malaria semi-immune donors indicated the immunogenic conformation of the purified fusion protein consisting of PfCelTOS, PfCSP_TSR, PfTRAP_TSR domains (CCT) protein. Total IgG from the CCT-specific mouse immune sera specifically recognized P. falciparum sporozoites in immunofluorescence assays and induced up to 35% inhibition in hepatocyte invasion assays. Featuring domains from three promising sporozoite antigens with different roles (attachment and cell traversal) in the hepatocyte invasion process, CCT has the potential to elicit broader immune responses against the pre-erythrocytic stage of P. falciparum and represents an interesting new candidate, also as a component of multi-stage, multi-subunit malaria vaccine cocktails.


Assuntos
Nicotiana/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Plasmodium falciparum/imunologia , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Esporozoítos/imunologia , Animais , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Temperatura Alta , Humanos , Vacinas Antimaláricas , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Camundongos , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Nicotiana/genética
12.
Mar Biotechnol (NY) ; 15(1): 63-72, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22562484

RESUMO

Many marine sponges (Porifera) are known to contain large amounts of phylogenetically diverse microorganisms. Sponges are also known for their large arsenal of natural products, many of which are halogenated. In this study, 36 different FADH2-dependent halogenase gene fragments were amplified from various Caribbean and Mediterranean sponges using newly designed degenerate PCR primers. Four unique halogenase-positive fosmid clones, all containing the highly conserved amino acid motif "GxGxxG", were identified in the microbial metagenome of Aplysina aerophoba. Sequence analysis of one halogenase-bearing fosmid revealed notably two open reading frames with high homologies to efflux and multidrug resistance proteins. Single cell genomic analysis allowed for a taxonomic assignment of the halogenase genes to specific symbiotic lineages. Specifically, the halogenase cluster S1 is predicted to be produced by a deltaproteobacterial symbiont and halogenase cluster S2 by a poribacterial sponge symbiont. An additional halogenase gene is possibly produced by an actinobacterial symbiont of marine sponges. The identification of three novel, phylogenetically, and possibly also functionally distinct halogenase gene clusters indicates that the microbial consortia of sponges are a valuable resource for novel enzymes involved in halogenation reactions.


Assuntos
Mineração de Dados/métodos , Enzimas/genética , Genômica/métodos , Metagenoma/genética , Poríferos/microbiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Teorema de Bayes , Primers do DNA/genética , Enzimas/metabolismo , Flavina-Adenina Dinucleotídeo/análogos & derivados , Flavina-Adenina Dinucleotídeo/genética , Flavina-Adenina Dinucleotídeo/metabolismo , França , Hidrocarbonetos Halogenados/metabolismo , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie
13.
Cell Host Microbe ; 13(1): 29-41, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23332154

RESUMO

Human complement is a first line defense against infection in which circulating proteins initiate an enzyme cascade on the microbial surface that leads to phagocytosis and lysis. Various pathogens evade complement recognition by binding to regulator proteins that protect host cells from complement activation. We show that emerging gametes of the malaria parasite Plasmodium falciparum bind the host complement regulator factor H (FH) following transmission to the mosquito to protect from complement-mediated lysis by the blood meal. Human complement is active in the mosquito midgut for approximately 1 hr postfeeding. During this period, the gamete surface protein PfGAP50 binds to FH and uses surface-bound FH to inactivate the complement protein C3b. Loss of FH-mediated protection, either through neutralization of FH or blockade of PfGAP50, significantly impairs gametogenesis and inhibits parasite transmission to the mosquito. Thus, Plasmodium co-opts the protective host protein FH to evade complement-mediated lysis within the mosquito midgut.


Assuntos
Complemento C3/imunologia , Fator H do Complemento/imunologia , Culicidae/imunologia , Insetos Vetores/imunologia , Malária Falciparum/parasitologia , Plasmodium falciparum/imunologia , Animais , Culicidae/parasitologia , Culicidae/fisiologia , Sistema Digestório/imunologia , Sistema Digestório/parasitologia , Feminino , Células Germinativas/crescimento & desenvolvimento , Células Germinativas/imunologia , Interações Hospedeiro-Parasita , Humanos , Insetos Vetores/parasitologia , Insetos Vetores/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/fisiologia
14.
PLoS One ; 8(11): e79920, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24278216

RESUMO

Pf38 is a surface protein of the malarial parasite Plasmodium falciparum. In this study, we produced and purified recombinant Pf38 and a fusion protein composed of red fluorescent protein and Pf38 (RFP-Pf38) using a transient expression system in the plant Nicotiana benthamiana. To our knowledge, this is the first description of the production of recombinant Pf38. To verify the quality of the recombinant Pf38, plasma from semi-immune African donors was used to confirm specific binding to Pf38. ELISA measurements revealed that immune responses to Pf38 in this African subset were comparable to reactivities to AMA-1 and MSP119. Pf38 and RFP-Pf38 were successfully used to immunise mice, although titres from these mice were low (on average 1∶11.000 and 1∶39.000, respectively). In immune fluorescence assays, the purified IgG fraction from the sera of immunised mice recognised Pf38 on the surface of schizonts, gametocytes, macrogametes and zygotes, but not sporozoites. Growth inhibition assays using αPf38 antibodies demonstrated strong inhibition (≥60%) of the growth of blood-stage P. falciparum. The development of zygotes was also effectively inhibited by αPf38 antibodies, as determined by the zygote development assay. Collectively, these results suggest that Pf38 is an interesting candidate for the development of a malaria vaccine.


Assuntos
Antígenos de Protozoários/genética , Vacinas Antimaláricas/imunologia , Nicotiana/genética , Planticorpos/genética , Plasmodium falciparum/imunologia , Animais , Antígenos de Protozoários/imunologia , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Planticorpos/imunologia , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
15.
Cell Res ; 21(4): 683-96, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21173797

RESUMO

Physical contact is important for the interaction between animal cells, but it can represent a major challenge for protists like malaria parasites. Recently, novel filamentous cell-cell contacts have been identified in different types of eukaryotic cells and termed nanotubes due to their morphological appearance. Nanotubes represent small dynamic membranous extensions that consist of F-actin and are considered an ancient feature evolved by eukaryotic cells to establish contact for communication. We here describe similar tubular structures in the malaria pathogen Plasmodium falciparum, which emerge from the surfaces of the forming gametes upon gametocyte activation in the mosquito midgut. The filaments can exhibit a length of > 100 µm and contain the F-actin isoform actin 2. They actively form within a few minutes after gametocyte activation and persist until the zygote transforms into the ookinete. The filaments originate from the parasite plasma membrane, are close ended and express adhesion proteins on their surfaces that are typically found in gametes, like Pfs230, Pfs48/45 or Pfs25, but not the zygote surface protein Pfs28. We show that these tubular structures represent long-distance cell-to-cell connections between sexual stage parasites and demonstrate that they meet the characteristics of nanotubes. We propose that malaria parasites utilize these adhesive "nanotubes" in order to facilitate intercellular contact between gametes during reproduction in the mosquito midgut.


Assuntos
Comunicação Celular , Culicidae/parasitologia , Células Germinativas/metabolismo , Nanotubos/parasitologia , Plasmodium falciparum/fisiologia , Actinas , Animais , Adesão Celular , Moléculas de Adesão Celular , Sistema Digestório/metabolismo , Sistema Digestório/parasitologia , Técnica Indireta de Fluorescência para Anticorpo , Interações Hospedeiro-Parasita , Malária/parasitologia , Microscopia Eletrônica , Plasmodium falciparum/metabolismo , Isoformas de Proteínas , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/fisiologia , Reprodução
16.
Int J Syst Evol Microbiol ; 59(Pt 6): 1433-7, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19502329

RESUMO

An actinomycete strain, isolated from the marine sponge Axinella polypoides collected from Banyuls-sur-Mer, France, was characterized using a polyphasic approach. Based on its chemotaxonomic and morphological characteristics, strain Pol001(T) belongs to the genus Streptomyces. The strain is characterized by ll-diaminopimelic acid in the cell wall, menaquinones MK-9(H(4), H(6), H(8)) and a DNA G+C content of 71.0 mol%. It forms a separate phyletic line based on phylogenetic analyses of the nearly complete 16S rRNA gene sequence. Strain Pol001(T) could be differentiated from other closely related Streptomyces species with validly published names by phenotypic and genotypic analysis. DNA-DNA hybridization between strain Pol001(T) and closely related reference strains further confirmed that strain Pol001(T) represents a novel taxon of the genus Streptomyces. Therefore, it is proposed that strain Pol001(T) represents a novel species in the genus Streptomyces, Streptomyces axinellae sp. nov.; the type strain is Pol001(T) (=DSM 41948(T) =CIP 109838(T)).


Assuntos
Axinella/microbiologia , Streptomyces/classificação , Streptomyces/isolamento & purificação , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/análise , DNA Ribossômico/análise , França , Genótipo , Mar Mediterrâneo , Dados de Sequência Molecular , Fenótipo , Filogenia , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie , Streptomyces/genética , Streptomyces/fisiologia
17.
Int J Syst Evol Microbiol ; 56(Pt 9): 2119-2124, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16957108

RESUMO

A marine bacterium, strain Pol012(T), was isolated from the Mediterranean sponge Axinella polypoides and subsequently characterized as belonging to subphylum 1 of the phylum 'Verrucomicrobia'. Strain Pol012(T) was non-motile, Gram-negative, coccoid or rod-shaped and red in colour. The menaquinones MK-8 and MK-9 were detected. The G+C content of the genomic DNA was 50.9 mol%. Growth was possible at temperatures between 8 and 30 degrees C and at pH values between 6.8 and 8.2. The closest cultured relative of strain Pol012(T) was Akkermansia muciniphila (83 % sequence similarity), while the closest environmental 16S rRNA gene sequence was the marine clone Arctic96BD-2 (95 % sequence similarity). Strain Pol012(T) is the first marine pure-culture representative of 'Verrucomicrobia' subphylum 1 and represents a novel genus and species, for which the name Rubritalea marina gen. nov., sp. nov. is proposed. The type strain is Pol012(T) (=DSM 177716(T)=CIP 108984(T)).


Assuntos
Bactérias/isolamento & purificação , Poríferos/microbiologia , RNA Ribossômico 16S/análise , Microbiologia da Água , Animais , Composição de Bases , DNA Bacteriano/análise , Mar Mediterrâneo , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Água do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA