Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Genet Genomics ; 297(6): 1481-1493, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35933483

RESUMO

Plant tolerance to heat or high temperature is crucial to crop production, especially in the situation of elevated temperature resulting from global climate change. Cowpea, Vigna unguiculata (L.) Walp., is an internationally important legume food crop and an excellent pool of genes for numerous traits resilient to environmental extremes, particularly heat and drought. Here, we report a single nucleotide polymorphism (SNP) genetic map for cowpea and identification of the loci controlling the heat tolerance in the species. The SNP map consists of 531 bins containing 4,154 SNPs grouped into 11 linkage groups, and collectively spans 1,084.7 cM, thus having a density of one SNP in 0.26 cM or 149 kb. The 11 linkage groups of the map were aligned to the 11 cowpea chromosomes. Quantitative trait locus (QTL) mapping identified nine QTLs responsible for the cowpea heat tolerance on seven of the 11 chromosomes, with each QTL explaining 6.5-21.8% of heat tolerance phenotypic variation. Moreover, we aligned these nine QTLs to the cowpea genome. Each of the QTLs was positioned in a genomic region ranging from 209,000 bp to 12,590,450 bp, and the QTL with the largest effect (21.8%) on heat tolerance, qHT4-1, was located within an interval of only 234,195 bp. These results provide SNP markers useful for marker-assisted selection for heat tolerance and lay a foundation for cloning, characterization, and applications of the genes controlling the cowpea heat tolerance for heat tolerance genetic improvement in cowpea and related crops.


Assuntos
Termotolerância , Vigna , Locos de Características Quantitativas/genética , Vigna/genética , Polimorfismo de Nucleotídeo Único/genética , Termotolerância/genética , Ligação Genética
2.
Mol Genet Genomics ; 295(5): 1187-1195, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32476049

RESUMO

Cowpea (Vigna unguiculate (L.) Walp.) is a worldwide important multifunctional legume crop for food grain, vegetable, fodder, and cover crop. Nevertheless, only limited research has been conducted on agronomic traits. Here, we report quantitative trait locus (QTL) analysis of the days to flowering (DTF) and plant height (PH) using a dense SNP linkage map recently developed from a recombinant inbred line (RIL) population derived from a cross between Golden Eye Cream and IT98K-476-8. The population was phenotyped for DTF and PH through field and greenhouse trials under two environments. The QTLs controlling these traits were mapped using multiple-environment combined and individual trial phenotypic data. The combined data analysis identified one major QTL (qDTF9.1) for DTF, and one major QTL (qPH9.1) and a minor QTL (qPH4.1) for PH. qDTF9.1 and qPH9.1 were adjacent to each other on Chromosome 9 and each explained 29.3% and 29.5% of the phenotypic variation (PVE), respectively. The individual trial data analysis identified a minor QTL (qDTF2.1) on Chromosome 2 for DTF and two minor QTLs (qPH4.1 and qPH4.2) on Chromosome 4 for PH, while the major QTLs, qDTF9.1 and qPH9.1, were consistently identified in all trials conducted. Epistasis analysis revealed that qDTF9.1 interacted with one locus on Chromosome 4, contributed 50% of the PVE, and qPH9.1 interacted with one locus on each of Chromosomes 4 and 6, contributing 30% and 23% of the PVE, respectively, suggesting that epistasis plays an important role in the trait performance. These results, therefore, provide a deeper understanding of the genetic architecture of plant DTF and PH, and molecular tools necessary for cloning the genes and for enhanced cowpea breeding.


Assuntos
Mapeamento Cromossômico/métodos , Locos de Características Quantitativas , Vigna/fisiologia , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Epistasia Genética , Flores/genética , Flores/crescimento & desenvolvimento , Fenótipo , Polimorfismo de Nucleotídeo Único , Vigna/anatomia & histologia , Vigna/genética
3.
Mol Genet Genomics ; 288(12): 691-705, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24146224

RESUMO

Heterosis has been widely used in crop breeding and production; however, little is known about the genes controlling trait heterosis. The shortage of genes known to function in heterosis significantly limits our understanding of the molecular basis underlying heterosis. Here, we report 748 genes differentially expressed (DG) in the developing top ear shoots between a maize heterotic F1 hybrid (Mo17 × B73) and its parental inbreds identified using maize microarrays containing 28,608 unigene features. Of the 748 DG, over 600 were new for the inbred and hybrid combination. The DG were enriched for 35 of the total 213 maize gene ontology (GO) terms, including those describing photosynthesis, respiration, DNA replication, metabolism, and hormone biosynthesis. From the DG, we identified six genes involved in glycolysis, three genes in the citrate cycle, and four genes in the C4-dicarboxylic acid cycle. We mapped 533 of the 748 DG to the maize B73 genome, 298 (55.9 %) of which mapped to the QTL intervals of 11 maize ear traits. Moreover, we compared the repertoire of the DG with that of 14-day seedlings of the same inbred and hybrid combination. Only approximately 5 % of the DG was shared between the two organs and developmental stages. Furthermore, we mapped 417 (55.7 %) of the 748 maize DG to the QTL intervals of 26 rice yield-related traits. Therefore, this study provides a repertoire of genes useful for identification of genes involved in maize ear trait heterosis and information for a better understanding of the molecular basis underlying heterosis in maize.


Assuntos
Quimera/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Brotos de Planta/genética , Zea mays/genética , Quimera/metabolismo , Clonagem Molecular , Cruzamentos Genéticos , Vigor Híbrido/genética , Hibridização Genética , Análise em Microsséries , Brotos de Planta/metabolismo , Plântula/genética , Plântula/metabolismo , Sementes/genética , Sementes/metabolismo , Análise de Sequência de DNA , Transcriptoma , Zea mays/metabolismo
4.
Plant Sci ; 324: 111424, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35995113

RESUMO

Accurate prediction of hybrid offspring complex trait phenotype from parents is paramount to enhanced plant breeding, animal breeding, and human medicine. Here we report genome-wide identification of genes enabling accurate prediction of hybrid offspring complex traits from parents using maize grain yield as the target trait. We identified 181 ZmF1GY genes enabling prediction of maize (Zea mays L.) F1 hybrid grain yield from parents and tested their utility and efficiency for predicting F1 hybrid grain yields from parents using their expressions, genic SNPs, and number of favorable alleles (NFAs), respectively. The ZmF1GY genes predicted hybrid grain yields from parents at an accuracy of 0.86, presented by correlation coefficient between predicted and observed phenotypes, within an environment, 0.74 across environments, and 0.64 across populations, outperforming genomic prediction by 27-406%, 23%, and 40%, respectively. Furthermore, we identified nine of the ZmF1GY genes containing SNPs or InDels in parents that increased or decreased hybrid grain yields by 14-46%. When the NFAs of these nine ZmF1GY genes were used for hybrid grain yield prediction from parents, they predicted hybrid grain yields at an accuracy of 0.79, outperforming genomic prediction by 21% that was based on up to tens of thousands of genome-wide SNPs. These results demonstrate the feasibility of developing a gene toolkit for a species enabling gene-based breeding across environments and populations that is much more powerful and efficient than current breeding, thereby helping secure the world's food production. The methodology is applicable to all crops, livestock, and humans.


Assuntos
Melhoramento Vegetal , Zea mays , Grão Comestível/genética , Genômica/métodos , Humanos , Herança Multifatorial , Fenótipo , Melhoramento Vegetal/métodos , Polimorfismo de Nucleotídeo Único/genética , Zea mays/genética
5.
Plant Sci ; 316: 111153, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35151437

RESUMO

Accurate, simple, rapid, and inexpensive prediction of complex traits controlled by numerous genes is paramount to enhanced plant breeding, animal breeding, and human medicine. Here we report a novel method that enables accurate, simple, and rapid prediction of complex traits of individuals or offspring from parents based on the number of favorable alleles (NFAs) of the genes controlling the objective traits. The NFAs of 226 cotton fiber length (GFL) genes and nine maize hybrid grain yield related (ZmF1GY) genes were directly used to predict cotton fiber lengths of individual plants and maize grain yields of F1 hybrids from parents, respectively, using prediction model-based methods as controls. The NFAs of the 226 GFL genes predicted cotton fiber lengths at an accuracy of 0.85, as the model methods and outperforming genomic prediction by 82 % - 170 %. The NFAs of the nine ZmF1GY genes predicted grain yields of maize hybrids from parents at an accuracy of 0.80, outperforming genomic prediction by 67 %. Moreover, the prediction accuracies of these traits were consistent across years, environments, and eco-agricultural systems. Importantly, the accurate prediction of these traits directly using the NFAs of the genes allows breeding to be performed in greenhouse, phytotron, or off-season, without the need of the model training and validation steps essential and costly for model-based genomic or genic prediction. Therefore, this new method dramatically outperforms the current model-based genomic methods used for phenotype prediction and streamlines the process of breeding, thus promising to substantially enhance current plant and animal breeding.


Assuntos
Herança Multifatorial , Zea mays , Alelos , Genoma de Planta , Genótipo , Modelos Genéticos , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Zea mays/genética
6.
BMC Genomics ; 12: 447, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21906286

RESUMO

BACKGROUND: A robust bacterial artificial chromosome (BAC)-based physical map is essential for many aspects of genomics research, including an understanding of chromosome evolution, high-resolution genome mapping, marker-assisted breeding, positional cloning of genes, and quantitative trait analysis. To facilitate turkey genetics research and better understand avian genome evolution, a BAC-based integrated physical, genetic, and comparative map was developed for this important agricultural species. RESULTS: The turkey genome physical map was constructed based on 74,013 BAC fingerprints (11.9 × coverage) from two independent libraries, and it was integrated with the turkey genetic map and chicken genome sequence using over 41,400 BAC assignments identified by 3,499 overgo hybridization probes along with > 43,000 BAC end sequences. The physical-comparative map consists of 74 BAC contigs, with an average contig size of 13.6 Mb. All but four of the turkey chromosomes were spanned on this map by three or fewer contigs, with 14 chromosomes spanned by a single contig and nine chromosomes spanned by two contigs. This map predicts 20 to 27 major rearrangements distinguishing turkey and chicken chromosomes, despite up to 40 million years of separate evolution between the two species. These data elucidate the chromosomal evolutionary pattern within the Phasianidae that led to the modern turkey and chicken karyotypes. The predominant rearrangement mode involves intra-chromosomal inversions, and there is a clear bias for these to result in centromere locations at or near telomeres in turkey chromosomes, in comparison to interstitial centromeres in the orthologous chicken chromosomes. CONCLUSION: The BAC-based turkey-chicken comparative map provides novel insights into the evolution of avian genomes, a framework for assembly of turkey whole genome shotgun sequencing data, and tools for enhanced genetic improvement of these important agricultural and model species.


Assuntos
Evolução Biológica , Galinhas/genética , Hibridização Genômica Comparativa , Mapeamento de Sequências Contíguas , Perus/genética , Animais , Cromossomos Artificiais Bacterianos/genética , Impressões Digitais de DNA , Biblioteca Genômica , Genômica , Análise de Sequência de DNA
7.
BMC Genomics ; 11: 501, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20849583

RESUMO

BACKGROUND: Chickpea (Cicer arietinum L.) is the third most important pulse crop worldwide. Despite its importance, relatively little is known about its genome. The availability of a genome-wide physical map allows rapid fine mapping of QTL, development of high-density genome maps, and sequencing of the entire genome. However, no such a physical map has been developed in chickpea. RESULTS: We present a genome-wide, BAC/BIBAC-based physical map of chickpea developed by fingerprint analysis. Four chickpea BAC and BIBAC libraries, two of which were constructed in this study, were used. A total of 67,584 clones were fingerprinted, and 64,211 (~11.7 x) of the fingerprints validated and used in the physical map assembly. The physical map consists of 1,945 BAC/BIBAC contigs, with each containing an average of 28.3 clones and having an average physical length of 559 kb. The contigs collectively span approximately 1,088 Mb. By using the physical map, we identified the BAC/BIBAC contigs containing or closely linked to QTL4.1 for resistance to Didymella rabiei (RDR) and QTL8 for days to first flower (DTF), thus further verifying the physical map and confirming its utility in fine mapping and cloning of QTL. CONCLUSION: The physical map represents the first genome-wide, BAC/BIBAC-based physical map of chickpea. This map, along with other genomic resources previously developed in the species and the genome sequences of related species (soybean, Medicago and Lotus), will provide a foundation necessary for many areas of advanced genomics research in chickpea and other legume species. The inclusion of transformation-ready BIBACs in the map greatly facilitates its utility in functional analysis of the legume genomes.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Cicer/genética , Mapeamento Físico do Cromossomo/métodos , Mapeamento de Sequências Contíguas , Impressões Digitais de DNA , Biblioteca Gênica , Genoma de Planta/genética , Repetições Minissatélites/genética , Locos de Características Quantitativas/genética
8.
Mar Biotechnol (NY) ; 10(4): 358-65, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18283517

RESUMO

Large-insert bacterial artificial chromosome (BAC) libraries are necessary for advanced genetics and genomics research. To facilitate gene cloning and characterization, genome analysis, and physical mapping of scallop, two BAC libraries were constructed from nuclear DNA of Zhikong scallop, Chlamys farreri Jones et Preston. The libraries were constructed in the BamHI and MboI sites of the vector pECBAC1, respectively. The BamHI library consists of 73,728 clones, and approximately 99% of the clones contain scallop nuclear DNA inserts with an average size of 110 kb, covering 8.0x haploid genome equivalents. Similarly, the MboI library consists of 7680 clones, with an average insert of 145 kb and no insert-empty clones, thus providing a genome coverage of 1.1x. The combined libraries collectively contain a total of 81,408 BAC clones arrayed in 212 384-well microtiter plates, representing 9.1x haploid genome equivalents and having a probability of greater than 99% of discovering at least one positive clone with a single-copy sequence. High-density clone filters prepared from a subset of the two libraries were screened with nine pairs of Overgos designed from the cDNA or DNA sequences of six genes involved in the innate immune system of mollusks. Positive clones were identified for every gene, with an average of 5.3 BAC clones per gene probe. These results suggest that the two scallop BAC libraries provide useful tools for gene cloning, genome physical mapping, and large-scale sequencing in the species.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Biblioteca Gênica , Imunidade Inata/genética , Pectinidae/genética , Pectinidae/imunologia , Animais , Reprodutibilidade dos Testes
9.
Nat Protoc ; 7(3): 467-78, 2012 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-22343429

RESUMO

Megabase-sized DNA is crucial to modern genomics research of all organisms. Among the preparation methods developed, the nuclei method is the simplest and most widely used for preparing high-quality megabase-sized DNA from divergent organisms. In this method, nuclei are first isolated by physically grinding the source tissues. The nontarget cytoplast organellar genomes and metabolites are removed by centrifugation and washing, thus maximizing the utility of the method and substantially improving the digestibility and clonability of the resultant DNA. The nuclei are then embedded in an agarose matrix containing numerous pores, allowing the access of restriction enzymes while preventing the DNA from physical shearing. DNA is extracted from the nuclei, purified and subsequently manipulated in the agarose matrix. Here we describe the nuclei method that we have successfully used to prepare high-quality megabase-sized DNA from hundreds of plant, animal, fish, insect, algal and microbial species. The entire protocol takes ∼3 d.


Assuntos
Núcleo Celular/genética , DNA/isolamento & purificação , Genômica/métodos , Manejo de Espécimes/métodos , Sefarose
10.
Nat Protoc ; 7(3): 479-99, 2012 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-22343430

RESUMO

Large-insert BAC (bacterial artificial chromosome) and BIBAC (binary BAC) libraries are essential for modern genomics research for all organisms. We helped pioneer the BAC and BIBAC technologies, and by using them we have constructed hundreds of BAC and BIBAC libraries for different species of plants, animals, marine animals, insects, algae and microbes. These libraries have been used globally for different aspects of genomics research. Here we describe the procedure with the latest improvements that we have made and used for construction of BIBAC libraries. The procedure includes the preparation of BIBAC vectors, the preparation of clonable fragments of the desired size from the source DNA, the construction and transformation of BIBACs and, finally, the characterization and assembly of BIBAC libraries. We also specify the modifications necessary for construction of BAC libraries using the protocol. The entire protocol takes ∼7 d.


Assuntos
Cromossomos Artificiais Bacterianos/genética , DNA/isolamento & purificação , Biblioteca Gênica , Genômica/métodos , Vetores Genéticos/genética , Especificidade da Espécie
11.
Mar Biotechnol (NY) ; 12(5): 558-68, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19957095

RESUMO

Half-smooth tongue sole (Cynoglossus semilaevis) is an increasingly important aquaculture species in China. It is also a tractable model to study sex chromosome evolution and to further elucidate the mechanism of sex determination in teleosts. Two bacterial artificial chromosome (BAC) libraries for C. semilaevis, with large, high-quality inserts and deep coverage, were constructed in the BamHI and HindIII sites of the vector pECBAC1. The two libraries contain a total of 55,296 BAC clones arrayed in 144 384-well microtiter plates and correspond to 13.36 haploid genome equivalents. The combined libraries have a greater than 99% probability of containing any single-copy sequence. Screening high-density arrays of the libraries with probes for female-specific markers and sex-related genes generated between 4-46 primary positive clones per probe. Thus, the two BAC libraries of C. semilaevis provided a readily useable platform for genomics research, illustrated by the isolation of sex determination gene(s).


Assuntos
Cromossomos Artificiais Bacterianos/genética , Clonagem Molecular , Pesqueiros/métodos , Linguados/genética , Regulação da Expressão Gênica/genética , Biblioteca Gênica , Processos de Determinação Sexual/genética , Animais , Feminino , Linguados/classificação , Masculino
12.
Science ; 313(5791): 1261-6, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16946064

RESUMO

Draft genome sequences have been determined for the soybean pathogen Phytophthora sojae and the sudden oak death pathogen Phytophthora ramorum. Oömycetes such as these Phytophthora species share the kingdom Stramenopila with photosynthetic algae such as diatoms, and the presence of many Phytophthora genes of probable phototroph origin supports a photosynthetic ancestry for the stramenopiles. Comparison of the two species' genomes reveals a rapid expansion and diversification of many protein families associated with plant infection such as hydrolases, ABC transporters, protein toxins, proteinase inhibitors, and, in particular, a superfamily of 700 proteins with similarity to known oömycete avirulence genes.


Assuntos
Evolução Biológica , DNA de Algas/genética , Genoma , Phytophthora/genética , Phytophthora/patogenicidade , Proteínas de Algas/genética , Proteínas de Algas/fisiologia , Genes , Hidrolases/genética , Hidrolases/metabolismo , Fotossíntese/genética , Filogenia , Mapeamento Físico do Cromossomo , Phytophthora/classificação , Phytophthora/fisiologia , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA , Simbiose , Toxinas Biológicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA