Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Virol ; 94(10)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32161170

RESUMO

Kaposi sarcoma-associated herpesvirus (KSHV) is necessary but not sufficient for primary effusion lymphoma (PEL) development. Alterations in cellular signaling pathways are also a characteristic of PEL. Other B cell lymphomas have acquired an oncogenic mutation in the myeloid differentiation primary response 88 (MYD88) gene. The MYD88 L265P mutant results in the activation of interleukin-1 receptor associated kinase (IRAK). To probe IRAK/MYD88 signaling in PEL, we employed CRISPR/Cas9 technology to generate stable deletion clones in BCBL-1Cas9 and BC-1Cas9 cells. To look for off-target effects, we determined the complete exome of the BCBL-1Cas9 and BC-1Cas9 cells. Deletion of either MYD88, IRAK4, or IRAK1 abolished interleukin-1 beta (IL-1ß) signaling; however, we were able to grow stable subclones from each population. Transcriptome sequencing (RNA-seq) analysis of IRAK4 knockout cell lines (IRAK4 KOs) showed that the IRAK pathway induced cellular signals constitutively, independent of IL-1ß stimulation, which was abrogated by deletion of IRAK4. Transient complementation with IRAK1 increased NF-κB activity in MYD88 KO, IRAK1 KO, and IRAK4 KO cells even in the absence of IL-1ß. IL-10, a hallmark of PEL, was dependent on the IRAK pathway, as IRAK4 KOs showed reduced IL-10 levels. We surmise that, unlike B cell receptor (BCR) signaling, MYD88/IRAK signaling is constitutively active in PEL, but that under cell culture conditions, PEL rapidly became independent of this pathway.IMPORTANCE One hundred percent of primary effusion lymphoma (PEL) cases are associated with Kaposi sarcoma-associated herpesvirus (KSHV). PEL cell lines, such as BCBL-1, are the workhorse for understanding this human oncovirus and the host pathways that KSHV dysregulates. Understanding their function is important for developing new therapies as well as identifying high-risk patient groups. The myeloid differentiation primary response 88 (MYD88)/interleukin-1 receptor associated kinase (IRAK) pathway, which has progrowth functions in other B cell lymphomas, has not been fully explored in PEL. By performing CRISPR/Cas9 knockout (KO) studies targeting the IRAK pathway in PEL, we were able to determine that established PEL cell lines can circumvent the loss of IRAK1, IRAK4, and MYD88; however, the deletion clones are deficient in interleukin-10 (IL-10) production. Since IL-10 suppresses T cell function, this suggests that the IRAK pathway may serve a function in vivo and during early-stage development of PEL.


Assuntos
Herpesvirus Humano 8/genética , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Linfoma de Efusão Primária/metabolismo , Linfoma de Efusão Primária/virologia , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais/genética , Linfócitos B , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Herpesvirus Humano 8/fisiologia , Humanos , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo , Análise de Sequência , Transcriptoma
2.
J Virol ; 91(4)2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27928018

RESUMO

The regulation of latency is central to herpesvirus biology. Recent transcriptome-wide surveys have uncovered evidence for promiscuous transcription across the entirety of the Kaposi's sarcoma-associated herpesvirus (KSHV) genome and postulated the existence of multiple viral long noncoding RNAs (lncRNAs). Next-generation sequencing studies are highly dependent on the specific experimental approach and particular algorithms of analysis and therefore benefit from independent confirmation of the results. The antisense-to-latency transcript (ALT) lncRNA was discovered by genome-tiling microarray (Chandriani et al., J Virol 86:7934-7942, 2010, https://doi.org/10.1128/JVI.00645-10). To characterize ALT in detail, we physically isolated this lncRNA by a strand-specific hybrid capture assay and then employed transcriptome sequencing and novel reverse transcription-PCR (RT-PCR) assays to distinguish all RNA species in the KSHV latency region. These methods confirm that ALT initiates at positions 120739/121012 and encodes a single splice site, which is shared with the 3'-coterminal K14-vGPCR/ORF74 mRNA, terminating at 130873 (GenBank accession number GQ994935), resulting in an ∼10,000-nucleotide transcript. No shorter ALT isoforms were identified. This study also identified a novel intron within the LANA 5' untranslated region using a splice acceptor at 127888. In summary, ALT joins PAN/nut1/T1.1 as a bona fide lncRNA of KSHV with potentially important roles in viral gene regulation and pathogenesis. IMPORTANCE: Increasing data support the importance of noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and lncRNAs, which have been shown to exert critical regulatory functions without coding for recognizable proteins. Defining the sequences of these ncRNAs is essential for future studies aiming to functionally characterize a specific ncRNA. Most lncRNA studies are highly dependent on high-throughput sequencing and bioinformatic analyses, few studies follow up on the initial predictions, and analyses are at times discordant. The manuscript characterizes one key viral lncRNA, ALT, by physically isolating ALT and by a sequencing-independent assay. It provides for a simple assay to monitor lncRNA expression in experimental and clinical samples. ALT is expressed antisense to the major viral latency transcripts encoding LANA as well as the viral miRNAs and thus has the potential to regulate this key part of the viral life cycle.


Assuntos
Herpesvirus Humano 8/genética , RNA Antissenso/genética , RNA Longo não Codificante/genética , Latência Viral/genética , Linhagem Celular , Regulação Viral da Expressão Gênica , Humanos , MicroRNAs/genética , RNA Mensageiro/genética , RNA Viral , Análise de Sequência de DNA , Transcriptoma , Regiões não Traduzidas , Replicação Viral
3.
Nucleic Acids Res ; 44(3): 1256-70, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26740583

RESUMO

Toxin-antitoxin (TA) systems play key roles in bacterial persistence, biofilm formation and stress responses. The MazF toxin from the Escherichia coli mazEF TA system is a sequence- and single-strand-specific endoribonuclease, and many studies have led to the proposal that MazF family members exclusively target mRNA. However, recent data indicate some MazF toxins can cleave specific sites within rRNA in concert with mRNA. In this report, we identified the repertoire of RNAs cleaved by Mycobacterium tuberculosis toxin MazF-mt9 using an RNA-seq-based approach. This analysis revealed that two tRNAs were the principal targets of MazF-mt9, and each was cleaved at a single site in either the tRNA(Pro14) D-loop or within the tRNA(Lys43) anticodon. This highly selective target discrimination occurs through recognition of not only sequence but also structural determinants. Thus, MazF-mt9 represents the only MazF family member known to target tRNA and to require RNA structure for recognition and cleavage. Interestingly, the tRNase activity of MazF-mt9 mirrors basic features of eukaryotic tRNases that also generate stable tRNA-derived fragments that can inhibit translation in response to stress. Our data also suggest a role for tRNA distinct from its canonical adapter function in translation, as cleavage of tRNAs by MazF-mt9 downregulates bacterial growth.


Assuntos
Proteínas de Bactérias/metabolismo , Endorribonucleases/metabolismo , Mycobacterium tuberculosis/metabolismo , RNA de Transferência/metabolismo , Anticódon/genética , Anticódon/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação/genética , Northern Blotting , Endorribonucleases/genética , Modelos Moleculares , Mycobacterium tuberculosis/genética , Conformação de Ácido Nucleico , Ligação Proteica , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA de Transferência/química , RNA de Transferência/genética
4.
RNA Biol ; 14(1): 15-19, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-27841735

RESUMO

The unusually high number of toxin-antitoxin (TA) systems in Mycobacterium tuberculosis, the etiological agent of tuberculosis, is thought to contribute to the unique ability of this pathogen to evade killing by the immune system and persist as a latent infection. One TA family, designated mazEF (for the MazE antitoxin and MazF toxin), comprises 10 of the >80 TA systems in the M. tuberculosis genome. Here we discuss the significance of our recent Nucleic Acids Res. paper that reports a surprising enzymatic activity for the MazF-mt9 toxin-sequence- and structure-specific cleavage of tRNA to generate tRNA halves-that underlies the growth-regulating properties of this toxin. This activity is distinct from all characterized MazF family members in M. tuberculosis and other bacteria; instead it is strikingly similar to that documented for members of another toxin family, VapC, despite the absence of sequence or structural similarity.


Assuntos
Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/química , Endorribonucleases/genética , Endorribonucleases/metabolismo , Tuberculose Latente/microbiologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Ligação Proteica , Clivagem do RNA , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA de Transferência/química , Relação Estrutura-Atividade , Tuberculose/microbiologia
5.
Proc Natl Acad Sci U S A ; 110(21): 8501-6, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23650345

RESUMO

The Mycobacterium tuberculosis genome contains an unusually high number of toxin-antitoxin modules, some of which have been suggested to play a role in the establishment and maintenance of latent tuberculosis. Nine of these toxin-antitoxin loci belong to the mazEF family, encoding the intracellular toxin MazF and its antitoxin inhibitor MazE. Nearly every MazF ortholog recognizes a unique three- or five-base RNA sequence and cleaves mRNA. As a result, these toxins selectively target a subset of the transcriptome for degradation and are known as "mRNA interferases." Here we demonstrate that a MazF family member from M. tuberculosis, MazF-mt6, has an additional role--inhibiting translation through targeted cleavage of 23S rRNA in the evolutionarily conserved helix/loop 70. We first determined that MazF-mt6 cleaves mRNA at (5')UU↓CCU(3') sequences. We then discovered that MazF-mt6 also cleaves M. tuberculosis 23S rRNA at a single UUCCU in the ribosomal A site that contacts tRNA and ribosome recycling factor. To gain further mechanistic insight, we demonstrated that MazF-mt6-mediated cleavage of rRNA can inhibit protein synthesis in the absence of mRNA cleavage. Finally, consistent with the position of 23S rRNA cleavage, MazF-mt6 destabilized 50S-30S ribosomal subunit association. Collectively, these results show that MazF toxins do not universally act as mRNA interferases, because MazF-mt6 inhibits protein synthesis by cleaving 23S rRNA in the ribosome active center.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/metabolismo , RNA Bacteriano/metabolismo , RNA Ribossômico 23S/metabolismo , Proteínas de Ligação a RNA/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Proteínas de Bactérias/genética , Mycobacterium tuberculosis/genética , Biossíntese de Proteínas/fisiologia , RNA Bacteriano/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico 23S/genética , Proteínas de Ligação a RNA/genética , Subunidades Ribossômicas Maiores de Bactérias/genética , Subunidades Ribossômicas Menores de Bactérias/genética
6.
RNA Biol ; 11(2): 101-5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24525465

RESUMO

Mycobacterium tuberculosis, the causative agent of tuberculosis in humans, is a bacterium with the unique ability to persist for years or decades as a latent infection. This latent state, during which bacteria have a markedly altered physiology and are thought to be dormant, is crucial for the bacteria to survive the stressful environments it encounters in the human host. Importantly, M. tuberculosis cells in the dormant state are generally refractory to antibiotics, most of which target cellular processes occurring in actively replicating bacteria. The molecular switches that enable M. tuberculosis to slow or stop its replication and become dormant remain unknown. However, the slow growth and dormant state that are hallmarks of latent tuberculosis infection have striking parallels to the "quasi-dormant" state of Escherichia coli cells caused by the toxin components of chromosomal toxin-antitoxin (TA) modules. An unusually large number of TA modules in M. tuberculosis, including nine in the mazEF family, may contribute to initiating this latent state or to adapting to stress conditions in the host. Toward filling the gap in our understanding of the physiological role of TA modules in M. tuberculosis, we are interested in identifying their molecular mechanisms to better understand how toxins impart growth control. Our recent publication (1) uncovered a novel function of a MazF toxin in M. tuberculosis that had not been associated with any other MazF ortholog. This toxin, MazF-mt6, can disrupt protein synthesis by cleavage of 23S rRNA at a single location in an evolutionarily conserved five-base sequence in the ribosome active center.


Assuntos
Antitoxinas/farmacologia , Toxinas Bacterianas/metabolismo , Mycobacterium tuberculosis/metabolismo , RNA Ribossômico 23S/metabolismo , Adaptação Fisiológica , Antitoxinas/genética , Sequência de Bases , Sítios de Ligação , Sequência Conservada , Evolução Molecular , Genes Bacterianos , Humanos , Modelos Genéticos , Mycobacterium tuberculosis/genética , Óperon , RNA Bacteriano/genética , Ribossomos/metabolismo
7.
Nat Commun ; 5: 3538, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24709835

RESUMO

Toxin-antitoxin (TA) systems are widespread in prokaryotes. Among these, the mazEF TA system encodes an endoribonucleolytic toxin, MazF, that inhibits growth by sequence-specific cleavage of single-stranded RNA. Defining the physiological targets of a MazF toxin first requires the identification of its cleavage specificity, yet the current toolkit is antiquated and limited. We describe a rapid genome-scale approach, MORE (mapping by overexpression of an RNase in Escherichia coli) RNA-seq, for defining the cleavage specificity of endoribonucleolytic toxins. Application of MORE RNA-seq to MazF-mt3 from Mycobacterium tuberculosis reveals two critical ribosomal targets-the essential, evolutionarily conserved helix/loop 70 of 23S rRNA and the anti-Shine-Dalgarno (aSD) sequence of 16S rRNA. Our findings support an emerging model where both ribosomal and messenger RNAs are principal targets of MazF toxins and suggest that, as in E. coli, removal of the aSD sequence by a MazF toxin modifies ribosomes to selectively translate leaderless mRNAs in M. tuberculosis.


Assuntos
Proteínas de Bactérias/metabolismo , Endorribonucleases/metabolismo , Escherichia coli , Mycobacterium tuberculosis , RNA Mensageiro/metabolismo , RNA Ribossômico 16S/metabolismo , RNA Ribossômico 23S/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Estrutura Secundária de Proteína , Clivagem do RNA , Ribonucleases/metabolismo , Análise de Sequência de RNA , Toxinas Biológicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA