Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
PLoS Biol ; 22(1): e3002451, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38180978

RESUMO

Lipoproteins of the opportunistic pathogen Staphylococcus aureus play a crucial role in various cellular processes and host interactions. Consisting of a protein and a lipid moiety, they support nutrient acquisition and anchor the protein to the bacterial membrane. Recently, we identified several processed and secreted small linear peptides that derive from the secretion signal sequence of S. aureus lipoproteins. Here, we show, for the first time, that the protein moiety of the S. aureus lipoprotein CamS has a biological role that is distinct from its associated linear peptide staph-cAM373. The small peptide was shown to be involved in interspecies horizontal gene transfer, the primary mechanism for the dissemination of antibiotic resistance among bacteria. We provide evidence that the CamS protein moiety is a potent repressor of cytotoxins, such as α-toxin and leukocidins. The CamS-mediated suppression of toxin transcription was reflected by altered disease severity in in vivo infection models involving skin and soft tissue, as well as bloodstream infections. Collectively, we have uncovered the role of the protein moiety of the staphylococcal lipoprotein CamS as a previously uncharacterized repressor of S. aureus toxin production, which consequently regulates virulence and disease outcomes. Notably, the camS gene is conserved in S. aureus, and we also demonstrated the muted transcriptional response of cytotoxins in 2 different S. aureus lineages. Our findings provide the first evidence of distinct biological functions of the protein moiety and its associated linear peptide for a specific lipoprotein. Therefore, lipoproteins in S. aureus consist of 3 functional components: a lipid moiety, a protein moiety, and a small linear peptide, with putative different biological roles that might not only determine the outcome of host-pathogen interactions but also drive the acquisition of antibiotic resistance determinants.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/genética , Lipoproteínas/genética , Interações Hospedeiro-Patógeno , Moléculas de Adesão Celular , Citotoxinas , Peptídeos
2.
J Infect Dis ; 215(2): 269-277, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27247345

RESUMO

Group A Streptococcus (GAS) has acquired an arsenal of virulence factors, promoting life-threatening invasive infections such as necrotizing fasciitis. Current therapeutic regimens for necrotizing fasciitis include surgical debridement and treatment with cell wall-active antibiotics. Addition of clindamycin (CLI) is recommended, although clinical evidence is lacking. Reflecting the current clinical dilemma, an observational study showed that only 63% of the patients with severe invasive GAS infection received CLI. This work thus aimed to address whether CLI improves necrotizing fasciitis outcome by modulating virulence factors of CLI-susceptible and CLI-resistant GAS in vitro and in vivo. Treatment with CLI reduced extracellular DNase Sda1 and streptolysin O (SLO) activity in vivo, whereas subinhibitory CLI concentrations induced expression and activity of SLO, DNase, and Streptococcus pyogenes cell envelope protease in vitro. Our in vivo results suggest that CLI should be administered as soon as possible to patients with necrotizing fasciitis, while our in vitro studies emphasize that a high dosage of CLI is essential.


Assuntos
Antibacterianos/farmacologia , Clindamicina/farmacologia , Fasciite Necrosante/tratamento farmacológico , Infecções Estreptocócicas/tratamento farmacológico , Streptococcus pyogenes/efeitos dos fármacos , Fatores de Virulência/antagonistas & inibidores , Animais , Antibacterianos/administração & dosagem , Clindamicina/administração & dosagem , Modelos Animais de Doenças , Fasciite Necrosante/microbiologia , Feminino , Humanos , Camundongos Endogâmicos C57BL , Infecções Estreptocócicas/microbiologia , Resultado do Tratamento
3.
Antimicrob Agents Chemother ; 60(10): 5957-67, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27458233

RESUMO

Staphylococcus aureus biofilms are extremely difficult to treat. They provide a protected niche for the bacteria, rendering them highly recalcitrant toward host defenses as well as antibiotic treatment. Bacteria within a biofilm are shielded from the immune system by the formation of an extracellular polymeric matrix, composed of polysaccharides, extracellular DNA (eDNA), and proteins. Many antibiotics do not readily penetrate biofilms, resulting in the presence of subinhibitory concentrations of antibiotics. Here, we show that subinhibitory concentrations of clindamycin triggered a transcriptional stress response in S. aureus via the alternative sigma factor B (σ(B)) and upregulated the expression of the major biofilm-associated genes atlA, lrgA, agrA, the psm genes, fnbA, and fnbB Our data suggest that subinhibitory concentrations of clindamycin alter the ability of S. aureus to form biofilms and shift the composition of the biofilm matrix toward higher eDNA content. An understanding of the molecular mechanisms underlying biofilm assembly and dispersal in response to subinhibitory concentrations of clinically relevant antibiotics such as clindamycin is critical to further optimize antibiotic treatment strategies of biofilm-associated S. aureus infections.


Assuntos
Antibacterianos/farmacologia , Clindamicina/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/administração & dosagem , Biofilmes/efeitos dos fármacos , Clindamicina/administração & dosagem , Relação Dose-Resposta a Droga , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Mutação , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus/fisiologia
4.
J Infect Dis ; 210(3): 473-82, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24526740

RESUMO

The Gram-positive human pathogen Staphylococcus aureus causes a variety of human diseases such as skin infections, pneumonia, and endocarditis. The micrococcal nuclease Nuc1 is one of the major S. aureus virulence factors and allows the bacterium to avoid neutrophil extracellular trap (NET)-mediated killing. We found that addition of the protein synthesis inhibitor clindamycin to S. aureus LAC cultures decreased nuc1 transcription and subsequently blunted nuclease activity in a molecular beacon-based fluorescence assay. We also observed reduced NET degradation through Nuc1 inhibition translating into increased NET-mediated clearance. Similarly, pooled human immunoglobulin specifically inhibited nuclease activity in a concentration-dependent manner. Inhibition of nuclease activity by clindamycin and immunoglobulin enhanced S. aureus clearance and should be considered in the treatment of S. aureus infections.


Assuntos
Clindamicina/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Imunoglobulinas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos
5.
Cell Rep ; 42(6): 112540, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37227819

RESUMO

Pseudomonas aeruginosa and Staphylococcus aureus are among the most frequently isolated bacterial species from polymicrobial infections of patients with cystic fibrosis and chronic wounds. We apply mass spectrometry guided interaction studies to determine how chemical interaction shapes the fitness and community structure during co-infection of these two pathogens. We demonstrate that S. aureus is equipped with an elegant mechanism to inactivate pyochelin via the yet uncharacterized methyltransferase Spm (staphylococcal pyochelin methyltransferase). Methylation of pyochelin abolishes the siderophore activity of pyochelin and significantly lowers pyochelin-mediated intracellular reactive oxygen species (ROS) production in S. aureus. In a murine wound co-infection model, an S. aureus mutant unable to methylate pyochelin shows significantly lower fitness compared with its parental strain. Thus, Spm-mediated pyochelin methylation is a mechanism to increase S. aureus survival during in vivo competition with P. aeruginosa.


Assuntos
Coinfecção , Infecções Estafilocócicas , Humanos , Camundongos , Animais , Staphylococcus aureus/fisiologia , Pseudomonas aeruginosa/metabolismo , Coinfecção/microbiologia , Infecções Estafilocócicas/microbiologia
7.
Plasmid ; 65(2): 159-68, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21145347

RESUMO

The intergenic region linking conjugative transfer and replication copy control modules of IncF plasmids shows conservation of gene homology and organization. Genes distal to finO are coordinately expressed with the upstream transfer operon encoding the majority of conjugation genes in related plasmids. Here we investigate potential functions for these genes in copy number control and in processes related to conjugation: gene transfer, pilus specific phage infection and plasmid-promoted biofilm formation by an Escherichia coli host. We find that insertional inactivation of genes in the finO distal region reduced transcriptional read through into the downstream copB gene of plasmid R1. The mutant plasmid derivatives exhibited a reduced copy number compared to the wild type. Moreover all insertion mutant derivatives of plasmid R1-16 with aberrantly low copy numbers conferred poor biofilm forming ability to their hosts. The general mutagenesis thus identified plasmid stability genes as the only plasmid functions besides conjugation genes linked to plasmid-promoted biofilm production under these laboratory conditions. Our findings imply that a novel component of cis- or trans-regulation on the transcriptional level is important to normal R1 plasmid copy number regulation.


Assuntos
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica , Fatores R/genética , Fatores R/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Biofilmes/crescimento & desenvolvimento , Escherichia coli/genética , Escherichia coli/metabolismo , Dosagem de Genes , Ordem dos Genes , Dados de Sequência Molecular , Mutagênese , Mutagênese Insercional , Mutação , Fenótipo
8.
Microbiol Mol Biol Rev ; 84(3)2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32792334

RESUMO

In many natural and clinical settings, bacteria are associated with some type of biotic or abiotic surface that enables them to form biofilms, a multicellular lifestyle with bacteria embedded in an extracellular matrix. Staphylococcus aureus and Staphylococcus epidermidis, the most frequent causes of biofilm-associated infections on indwelling medical devices, can switch between an existence as single free-floating cells and multicellular biofilms. During biofilm formation, cells first attach to a surface and then multiply to form microcolonies. They subsequently produce the extracellular matrix, a hallmark of biofilm formation, which consists of polysaccharides, proteins, and extracellular DNA. After biofilm maturation into three-dimensional structures, the biofilm community undergoes a disassembly process that leads to the dissemination of staphylococcal cells. As biofilms are dynamic and complex biological systems, staphylococci have evolved a vast network of regulatory mechanisms to modify and fine-tune biofilm development upon changes in environmental conditions. Thus, biofilm formation is used as a strategy for survival and persistence in the human host and can serve as a reservoir for spreading to new infection sites. Moreover, staphylococcal biofilms provide enhanced resilience toward antibiotics and the immune response and impose remarkable therapeutic challenges in clinics worldwide. This review provides an overview and an updated perspective on staphylococcal biofilms, describing the characteristic features of biofilm formation, the structural and functional properties of the biofilm matrix, and the most important mechanisms involved in the regulation of staphylococcal biofilm formation. Finally, we highlight promising strategies and technologies, including multitargeted or combinational therapies, to eradicate staphylococcal biofilms.


Assuntos
Biofilmes/crescimento & desenvolvimento , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/fisiologia , Staphylococcus epidermidis/fisiologia , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Proliferação de Células , Resistência Microbiana a Medicamentos , Matriz Extracelular/metabolismo , Humanos , Evasão da Resposta Imune , Terapia por Fagos , Percepção de Quorum , Transdução de Sinais , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Staphylococcus epidermidis/imunologia , Transativadores/metabolismo
9.
mBio ; 11(2)2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32291297

RESUMO

Staphylococcus aureus can colonize the human host and cause a variety of superficial and invasive infections. The success of S. aureus as a pathogen derives from its ability to modulate its virulence through the release, sensing of and response to cyclic signaling peptides. Here we provide, for the first time, evidence that S. aureus processes and secretes small linear peptides through a specialized pathway that converts a lipoprotein leader into an extracellular peptide signal. We have identified and confirmed the machinery for each step and demonstrate that the putative membrane metalloprotease Eep and the EcsAB transporter are required to complete the processing and secretion of the peptides. In addition, we have identified several linear peptides, including the interspecies signaling molecule staph-cAM373, that are dependent on this processing and secretion pathway. These findings are particularly important because multiple Gram-positive bacteria rely on small linear peptides to control bacterial gene expression and virulence.IMPORTANCE Here, we provide evidence indicating that S. aureus secretes small linear peptides into the environment via a novel processing and secretion pathway. The discovery of a specialized pathway for the production of small linear peptides and the identification of these peptides leads to several important questions regarding their role in S. aureus biology, most interestingly, their potential to act as signaling molecules. The observations in this study provide a foundation for further in-depth studies into the biological activity of small linear peptides in S. aureus.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Metaloproteases/metabolismo , Peptídeos/metabolismo , Staphylococcus aureus/enzimologia , Regulação Bacteriana da Expressão Gênica , Humanos , Virulência
10.
mBio ; 10(6)2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31874913

RESUMO

Staphylococcus aureus is an important pathogen responsible for nosocomial and community-acquired infections in humans, and methicillin-resistant S. aureus (MRSA) infections have continued to increase despite widespread preventative measures. S. aureus can colonize the female vaginal tract, and reports have suggested an increase in MRSA infections in pregnant and postpartum women as well as outbreaks in newborn nurseries. Currently, little is known about specific factors that promote MRSA vaginal colonization and subsequent infection. To study S. aureus colonization of the female reproductive tract in a mammalian system, we developed a mouse model of S. aureus vaginal carriage and demonstrated that both hospital-associated and community-associated MRSA isolates can colonize the murine vaginal tract. Immunohistochemical analysis revealed an increase in neutrophils in the vaginal lumen during MRSA colonization. Additionally, we observed that a mutant lacking fibrinogen binding adhesins exhibited decreased persistence within the mouse vagina. To further identify novel factors that promote vaginal colonization, we performed RNA sequencing to determine the transcriptome of MRSA growing in vivo during vaginal carriage at 5 h, 1 day, and 3 days postinoculation. Over 25% of the bacterial genes were differentially regulated at all time points during colonization compared to laboratory cultures. The most highly induced genes were those involved in iron acquisition, including the Isd system and siderophore transport systems. Mutants deficient in these pathways did not persist as well during in vivo colonization. These results reveal that fibrinogen binding and the capacity to overcome host nutritional limitation are important determinants of MRSA vaginal colonization.IMPORTANCEStaphylococcus aureus is an opportunistic pathogen able to cause a wide variety of infections in humans. Recent reports have suggested an increasing prevalence of MRSA in pregnant and postpartum women, coinciding with the increased incidence of MRSA infections in neonatal intensive care units (NICUs) and newborn nurseries. Vertical transmission from mothers to infants at delivery is a likely route of MRSA acquisition by the newborn; however, essentially nothing is known about host and bacterial factors that influence MRSA carriage in the vagina. Here, we established a mouse model of vaginal colonization and observed that multiple MRSA strains can persist in the vaginal tract. Additionally, we determined that MRSA interactions with fibrinogen and iron uptake can promote vaginal persistence. This study is the first to identify molecular mechanisms which govern vaginal colonization by MRSA, the critical initial step preceding infection and neonatal transmission.


Assuntos
Interações entre Hospedeiro e Microrganismos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Vagina/microbiologia , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Fibrinogênio/metabolismo , Perfilação da Expressão Gênica , Ferro/metabolismo , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mutação , Neutrófilos/imunologia , Análise de Sequência de RNA , Vagina/imunologia , Fatores de Virulência/genética
11.
Sci Rep ; 9(1): 16663, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31723175

RESUMO

In vivo bioluminescence imaging has been used to monitor Staphylococcus aureus infections in preclinical models by employing bacterial reporter strains possessing a modified lux operon from Photorhabdus luminescens. However, the relatively short emission wavelength of lux (peak 490 nm) has limited tissue penetration. To overcome this limitation, the gene for the click beetle (Pyrophorus plagiophtalamus) red luciferase (luc) (with a longer >600 emission wavelength), was introduced singly and in combination with the lux operon into a methicillin-resistant S. aureus strain. After administration of the substrate D-luciferin, the luc bioluminescent signal was substantially greater than the lux signal in vitro. The luc signal had enhanced tissue penetration and improved anatomical co-registration with infected internal organs compared with the lux signal in a mouse model of S. aureus bacteremia with a sensitivity of approximately 3 × 104 CFU from the kidneys. Finally, in an in vivo mixed bacterial wound infection mouse model, S. aureus luc signals could be spectrally unmixed from Pseudomonas aeruginosa lux signals to noninvasively monitor the bacterial burden of both strains. Therefore, the S. aureus luc reporter may provide a technological advance for monitoring invasive organ dissemination during S. aureus bacteremia and for studying bacterial dynamics during mixed infections.


Assuntos
Bacteriemia/microbiologia , Coinfecção/microbiologia , Besouros/enzimologia , Luciferases/metabolismo , Infecções por Pseudomonas/microbiologia , Infecções Estafilocócicas/microbiologia , Infecção dos Ferimentos/microbiologia , Animais , Bacteriemia/diagnóstico por imagem , Bacteriemia/metabolismo , Coinfecção/diagnóstico por imagem , Coinfecção/metabolismo , Besouros/genética , Diagnóstico por Imagem/métodos , Feminino , Genes Reporter , Luciferases/genética , Medições Luminescentes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Pseudomonas/diagnóstico por imagem , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/metabolismo , Coelhos , Infecções Estafilocócicas/diagnóstico por imagem , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus/metabolismo , Infecção dos Ferimentos/diagnóstico por imagem , Infecção dos Ferimentos/metabolismo
12.
FEMS Microbiol Lett ; 362(23): fnv192, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26459885

RESUMO

Neutrophil extracellular trap (NET) formation is described as a tool of the innate host defence to fight against invading pathogens. Fibre-like DNA structures associated with proteins such as histones, cell-specific enzymes and antimicrobial peptides are released, thereby entrapping invading pathogens. It has been reported that several bacteria are able to degrade NETs by nucleases and thus evade the NET-mediated entrapment. Here we studied the ability of three different Yersinia serotypes to induce and degrade NETs. We found that the common Yersinia enterocolitica serotypes O:3, O:8 and O:9 were able to induce NETs in human blood-derived neutrophils during the first hour of co-incubation. At later time points, the NET amount was reduced, suggesting that degradation of NETs has occurred. This was confirmed by NET degradation assays with phorbol-myristate-acetate-pre-stimulated neutrophils. In addition, we found that the Yersinia supernatants were able to degrade purified plasmid DNA. The absence of Ca(2+) and Mg(2+) ions, but not that of a protease inhibitor cocktail, completely abolished NET degradation. We therefore postulate that Y. enterocolitica produces Ca(2+)/Mg(2+)-dependent NET-degrading nucleases as shown for some Gram-positive pathogens.


Assuntos
Armadilhas Extracelulares/metabolismo , Yersinia enterocolitica/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cálcio/metabolismo , Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/microbiologia , Humanos , Imunidade Inata , Magnésio/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Alinhamento de Sequência , Sorogrupo , Yersinia enterocolitica/classificação , Yersinia enterocolitica/enzimologia
13.
Acta Biomater ; 24: 343-51, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26102336

RESUMO

Biomaterials upon implantation are immediately covered by blood proteins which direct the subsequent blood activation. These early events determine the following cascade of biological reactions and consequently the long-term success of implants. The ability to modulate surface properties of biomaterials is therefore of considerable clinical significance. Goal of this study was an in-depth understanding of the biological response to cobalt chromium stent alloys with engineered surface oxide layers, which showed altered body reactions in vivo. We analyzed in vitro the biological events following initial blood contact on engineered cobalt chromium surfaces featuring said oxide layers. Surface-specific blood reactions were confirmed by scanning electron microscopy and the adsorbed protein layers were characterized by mass spectrometry. This powerful proteomics tool allowed the identification and quantification of over hundred surface-adhering proteins. Proteins associated with the coagulation cascade, platelet adhesion and neutrophil function correlated with the various blood surface activations observed. Furthermore, results of pre-coated surfaces with defined fibrinogen-albumin mixtures suggest that neutrophil adhesion was controlled by fibrinogen orientation and conformation rather than quantity. This study highlights the importance of controlling the biological response in the complex protein-implant surface interactions and the potential of the surface modifications to improve the clinical performance of medical implants. STATEMENT OF SIGNIFICANCE: The blood contact activation of CoCr alloys is determined by their surface oxide layer properties. Modifications of the oxide layer affected the total amount of adsorbed proteins and the composition of the adsorbed protein layer. Additionally fibrinogen coatings mediated the surface-dependent neutrophil adhesion in a concentration-independent manner, indicating the influence of conformation and/or orientation of the adsorbed protein. Despite the complexity of protein-implant interactions, this study highlights the importance of understanding and controlling mechanisms of protein adhesion in order to improve and steer the performance of medical implants. It shows that modification of the surface oxide layer is a very attractive strategy to directly functionalize metallic implant surfaces and optimize their blood interaction for the desired orthopedic or cardiovascular applications.


Assuntos
Ligas de Cromo/química , Fibrinogênio/química , Neutrófilos/metabolismo , Adsorção , Adesão Celular , Humanos , Neutrófilos/patologia , Óxidos/química , Propriedades de Superfície
14.
J Mol Med (Berl) ; 91(7): 861-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23443671

RESUMO

Group A Streptococcus (GAS) is a human pathogen causing a wide range of mild to severe and life-threatening diseases. The GAS M1 protein is a major virulence factor promoting GAS invasiveness and resistance to host innate immune clearance. M1 displays an irregular coiled-coil structure, including the B-repeats that bind fibrinogen. Previously, we found that B-repeat stabilisation generates an idealised version of M1 (M1) characterised by decreased fibrinogen binding in vitro. To extend these findings based on a soluble truncated version of M1, we now studied the importance of the B-repeat coiled-coil irregularities in full length M1 and M1 expressed in live GAS and tested whether the modulation of M1-fibrinogen interactions would open up novel therapeutic approaches. We found that altering either the M1 structure on the GAS cell surface or removing its target host protein fibrinogen blunted GAS virulence. GAS expressing M1 showed an impaired ability to adhere to and to invade human endothelial cells, was more readily killed by whole blood or neutrophils and most importantly was less virulent in a murine necrotising fasciitis model. M1-mediated virulence of wild-type GAS was strictly dependent on the presence and concentration of fibrinogen complementing our finding that M1-fibrinogen interactions are crucial for GAS virulence. Consistently blocking M1-fibrinogen interactions by fragment D reduced GAS virulence in vitro and in vivo. This supports our conclusion that M1-fibrinogen interactions are crucial for GAS virulence and that interference may open up novel complementary treatment options for GAS infections caused by the leading invasive GAS strain M1.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/metabolismo , Fibrinogênio/metabolismo , Streptococcus pyogenes/patogenicidade , Animais , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Transporte/genética , Adesão Celular , Linhagem Celular , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/virologia , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA