RESUMO
The obesity epidemic has increased type II diabetes mellitus (T2DM) across developed countries. Cardiac T2DM risks include ischemic heart disease, heart failure with preserved ejection fraction, intolerance to ischemia-reperfusion (I-R) injury, and refractoriness to cardioprotection. While opioids are cardioprotective, T2DM causes opioid receptor signaling dysfunction. We tested the hypothesis that sustained opioid receptor stimulus may overcome diabetes mellitus-induced cardiac dysfunction via membrane/mitochondrial-dependent protection. In a murine T2DM model, we investigated effects of morphine on cardiac function, I-R tolerance, ultrastructure, subcellular cholesterol expression, mitochondrial protein abundance, and mitochondrial function. T2DM induced 25% weight gain, hyperglycemia, glucose intolerance, cardiac hypertrophy, moderate cardiac depression, exaggerated postischemic myocardial dysfunction, abnormalities in mitochondrial respiration, ultrastructure and Ca2+ -induced swelling, and cell death were all evident. Morphine administration for 5 days: (1) improved glucose homeostasis; (2) reversed cardiac depression; (3) enhanced I-R tolerance; (4) restored mitochondrial ultrastructure; (5) improved mitochondrial function; (6) upregulated Stat3 protein; and (7) preserved membrane cholesterol homeostasis. These data show that morphine treatment restores contractile function, ischemic tolerance, mitochondrial structure and function, and membrane dynamics in type II diabetic hearts. These findings suggest potential translational value for short-term, but high-dose morphine administration in diabetic patients undergoing or recovering from acute ischemic cardiovascular events.
Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Morfina/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Animais , Humanos , Camundongos , Mitocôndrias Cardíacas/metabolismo , Infarto do Miocárdio/etiologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologiaRESUMO
Cirrhotic cardiomyopathy is a clinical syndrome in patients with liver cirrhosis characterized by blunted cardiac contractile responses to stress and/or heart rate-corrected QT (QTc) interval prolongation. Caveolin-3 (Cav-3) plays a critical role in cardiac protection and is an emerging therapeutic target for heart disease. We investigated the protective role of cardiac-specific overexpression (OE) of Cav-3 in cirrhotic cardiomyopathy. Biliary fibrosis was induced in male Cav-3 OE mice and transgene negative (TGneg) littermates by feeding a diet containing 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC; 0.1%) for 3 wk. Liver pathology and blood chemistries were assessed, and stress echocardiography, telemetry, and isolated heart perfusion studies to assess adrenergic responsiveness were performed. Cav-3 OE mice showed a similar degree of hyperdynamic contractility, pulmonary hypertension, and QTc interval prolongation as TGneg mice after 3 wk of DDC diet. Blunted systolic responses were shown in both DDC-fed Cav-3 OE and TGneg hearts after in vivo isoproterenol challenge. However, QTc interval prolongation after in vivo isoproterenol challenge was significantly less in DDC-fed Cav-3 OE hearts compared with DDC-fed TGneg hearts. In ex vivo perfused hearts, where circulatory factors are absent, isoproterenol challenge showed hearts from DDC-fed Cav-3 OE mice had better cardiac contractility and relaxation compared with DDC-fed TGneg hearts. Although Cav-3 OE in the heart did not prevent cardiac alterations in DDC-induced biliary fibrosis, cardiac expression of Cav-3 reduced QTc interval prolongation after adrenergic stimulation in cirrhosis.NEW & NOTEWORTHY Prevalence of cirrhotic cardiomyopathy is up to 50% in cirrhotic patients, and liver transplantation is the only treatment. However, cirrhotic cardiomyopathy is associated with perioperative morbidity and mortality after liver transplantation; therefore, management of cirrhotic cardiomyopathy is crucial for successful liver transplantation. This study shows cardiac myocyte specific overexpression of caveolin-3 (Cav-3) provides better cardiac contractile responses and less corrected QT prolongation during adrenergic stress in a cirrhotic cardiomyopathy model, suggesting beneficial effects of Cav-3 expression in cirrhotic cardiomyopathy.
Assuntos
Cardiomiopatias/metabolismo , Caveolina 3/metabolismo , Cirrose Hepática Biliar/metabolismo , Miocárdio/metabolismo , Potenciais de Ação , Animais , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Cardiomiopatias/prevenção & controle , Caveolina 3/genética , Modelos Animais de Doenças , Frequência Cardíaca , Preparação de Coração Isolado , Cirrose Hepática Biliar/induzido quimicamente , Cirrose Hepática Biliar/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Contração Miocárdica , Miocárdio/patologia , Piridinas , Transdução de Sinais , Fatores de Tempo , Regulação para CimaRESUMO
Statins, which reduce LDL-cholesterol by inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, are among the most widely prescribed drugs. Skeletal myopathy is a known statin-induced adverse effect associated with mitochondrial changes. We hypothesized that similar effects would occur in cardiac myocytes in a lipophilicity-dependent manner between 2 common statins: atorvastatin (lipophilic) and pravastatin (hydrophilic). Neonatal cardiac ventricular myocytes were treated with atorvastatin and pravastatin for 48 h. Both statins induced endoplasmic reticular (ER) stress, but only atorvastatin inhibited ERK1/2T202/Y204, AktSer473, and mammalian target of rapamycin signaling; reduced protein abundance of caveolin-1, dystrophin, epidermal growth factor receptor, and insulin receptor-ß; decreased Ras homolog gene family member A activation; and induced apoptosis. In cardiomyocyte-equivalent HL-1 cells, atorvastatin, but not pravastatin, reduced mitochondrial oxygen consumption. When male mice underwent atorvastatin and pravastatin administration per os for up to 7 mo, only long-term atorvastatin, but not pravastatin, induced elevated serum creatine kinase; swollen, misaligned, size-variable, and disconnected cardiac mitochondria; alteration of ER structure; repression of mitochondria- and endoplasmic reticulum-related genes; and a 21% increase in mortality in cardiac-specific vinculin-knockout mice during the first 2 months of administration. To our knowledge, we are the first to demonstrate in vivo that long-term atorvastatin administration alters cardiac ultrastructure, a finding with important clinical implications.-Godoy, J. C., Niesman, I. R., Busija, A. R., Kassan, A., Schilling, J. M., Schwarz, A., Alvarez, E. A., Dalton, N. D., Drummond, J. C., Roth, D. M., Kararigas, G., Patel, H. H., Zemljic-Harpf, A. E. Atorvastatin, but not pravastatin, inhibits cardiac Akt/mTOR signaling and disturbs mitochondrial ultrastructure in cardiac myocytes.
Assuntos
Atorvastatina/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Pravastatina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , LDL-Colesterol/sangue , Creatina Quinase/sangue , Masculino , Camundongos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , Transcriptoma , Vinculina/genética , Proteína rhoA de Ligação ao GTP/metabolismoRESUMO
Interventions that preserve motor neurons or restore functional motor neuroplasticity may extend longevity in amyotrophic lateral sclerosis (ALS). Delivery of neurotrophins may potentially revive degenerating motor neurons, yet this approach is dependent on the proper subcellular localization of neurotrophin receptor (NTR) to plasmalemmal signaling microdomains, termed membrane/lipid rafts (MLRs). We previously showed that overexpression of synapsin-driven caveolin-1 (Cav-1) (SynCav1) increases MLR localization of NTR [e.g., receptor tyrosine kinase B (TrkB)], promotes hippocampal synaptic and neuroplasticity, and significantly improves learning and memory in aged mice. The present study crossed a SynCav1 transgene-positive (SynCav1+) mouse with the mutant human superoxide dismutase glycine to alanine point mutation at amino acid 93 (hSOD1G93A) mouse model of ALS. When compared with hSOD1G93A, hSOD1G93A/SynCav1+ mice exhibited greater body weight and longer survival as well as better motor function. Microscopic analyses of hSOD1G93A/SynCav1+ spinal cords revealed preserved spinal cord α-motor neurons and preserved mitochondrial morphology. Moreover, hSOD1G93A/SynCav1+ spinal cords contained more MLRs (cholera toxin subunit B positive) and MLR-associated TrkB and Cav-1 protein expression. These findings demonstrate that SynCav1 delays disease progression in a mouse model of ALS, potentially by preserving or restoring NTR expression and localization to MLRs.-Sawada, A., Wang, S., Jian, M., Leem, J., Wackerbarth, J., Egawa, J., Schilling, J. M., Platoshyn, O., Zemljic-Harpf, A., Roth, D. M., Patel, H. H., Patel, P. M., Marsala, M., Head, B. P. Neuron-targeted caveolin-1 improves neuromuscular function and extends survival in SOD1G93A mice.
Assuntos
Caveolina 1/fisiologia , Músculo Esquelético/fisiologia , Fenômenos Fisiológicos do Sistema Nervoso , Superóxido Dismutase-1/genética , Animais , Peso Corporal , Caveolina 1/metabolismo , Estimulação Elétrica , Humanos , Longevidade , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Motores/citologia , Taxa de SobrevidaRESUMO
The handling-induced dark neuron is a histological artifact observed in brain samples handled before fixation with aldehydes. To explore associations between dark neurons and immunohistochemical alterations in mouse brains, we examined protein products encoded by Cav3 (neuronal perikarya/neurites), Rbbp4 (neuronal nuclei), Gfap (astroglia), and Aif1 (microglia) genes in adjacent tissue sections. Here, dark neurons were incidental findings from our prior project, studying the effects of age and high-fat diet on metabolic homeostasis in male C57BL/6N mice. Available were brains from 4 study groups: middle-aged/control diet, middle-aged/high-fat diet, old/control diet, and old/high-fat diet. Young/control diet mice were used as baseline. The hemibrains were immersion-fixed with paraformaldehyde and paraffin-embedded. In the hippocampal formation, we found negative correlations between dark neuron hyperbasophilia and immunoreactivity for CAV3, RBBP4, and glial fibrillary acidic protein (GFAP) using quantitative image analysis. There was no significant difference in dark neuron hyperbasophilia or immunoreactivity for any protein examined among all groups. In contrast, in the hippocampal fimbria, old age seemed to be associated with higher immunoreactivity for GFAP and allograft inflammatory factor-1. Our findings suggest that loss of immunohistochemical reactivity for CAV3, RBBP4, and GFAP in the hippocampal formation is an artifact associated with the occurrence of dark neurons. The unawareness of dark neurons may lead to misinterpretation of immunohistochemical reactivity alterations.
Assuntos
Artefatos , Biomarcadores/análise , Imuno-Histoquímica , Neurônios , Manejo de Espécimes/efeitos adversos , Animais , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismoRESUMO
Type I PKA regulatory α-subunit (RIα; encoded by the Prkar1a gene) serves as the predominant inhibitor protein of the catalytic subunit of cAMP-dependent protein kinase (PKAc). However, recent evidence suggests that PKA signaling can be initiated by cAMP-independent events, especially within the context of cellular oxidative stress such as ischemia-reperfusion (I/R) injury. We determined whether RIα is actively involved in the regulation of PKA activity via reactive oxygen species (ROS)-dependent mechanisms during I/R stress in the heart. Induction of ex vivo global I/R injury in mouse hearts selectively downregulated RIα protein expression, whereas RII subunit expression appears to remain unaltered. Cardiac myocyte cell culture models were used to determine that oxidant stimulus (i.e., H2O2) alone is sufficient to induce RIα protein downregulation. Transient increase of RIα expression (via adenoviral overexpression) negatively affects cell survival and function upon oxidative stress as measured by increased induction of apoptosis and decreased mitochondrial respiration. Furthermore, analysis of mitochondrial subcellular fractions in heart tissue showed that PKA-associated proteins are enriched in subsarcolemmal mitochondria (SSM) fractions and that loss of RIα is most pronounced at SSM upon I/R injury. These data were supported via electron microscopy in A-kinase anchoring protein 1 (AKAP1)-knockout mice, where loss of AKAP1 expression leads to aberrant mitochondrial morphology manifested in SSM but not interfibrillar mitochondria. Thus, we conclude that modification of RIα via ROS-dependent mechanisms induced by I/R injury has the potential to sensitize PKA signaling in the cell without the direct use of the canonical cAMP-dependent activation pathway.NEW & NOTEWORTHY We uncovered a previously undescribed phenomenon involving oxidation-induced activation of PKA signaling in the progression of cardiac ischemia-reperfusion injury. Type I PKA regulatory subunit RIα, but not type II PKA regulatory subunits, is dynamically regulated by oxidative stress to trigger the activation of the catalytic subunit of PKA in cardiac myocytes. This effect may play a critical role in the regulation of subsarcolemmal mitochondria function upon the induction of ischemic injury in the heart.
Assuntos
Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Transdução de SinaisRESUMO
The noble gas helium (He) induces cardioprotection in vivo through unknown molecular mechanisms. He can interact with and modify cellular membranes. Caveolae are cholesterol and sphingolipid-enriched invaginations of the plasma-membrane-containing caveolin (Cav) proteins that are critical in protection of the heart. Mice (C57BL/6J) inhaled either He gas or adjusted room air. Functional measurements were performed in the isolated Langendorff perfused heart at 24 h post He inhalation. Electron paramagnetic resonance spectrometry (EPR) of samples was carried out at 24 h post He inhalation. Immunoblotting was used to detect Cav-1/3 expression in whole-heart tissue, exosomes isolated from platelet free plasma (PFP) and membrane fractions. Additionally, transmission electron microscopy analysis of cardiac tissue and serum function and metabolomic analysis were performed. In contrast to cardioprotection observed in in vivo models, the isolated Langendorff perfused heart revealed no protection after He inhalation. However, levels of Cav-1/3 were reduced 24 h after He inhalation in whole-heart tissue, and Cav-3 was increased in exosomes from PFP. Addition of serum to muscle cells in culture or naïve ventricular tissue increased mitochondrial metabolism without increasing reactive oxygen species generation. Primary and lipid metabolites determined potential changes in ceramide by He exposure. In addition to direct effects on myocardium, He likely induces the release of secreted membrane factors enriched in caveolae. Our results suggest a critical role for such circulating factors in He-induced organ protection.
Assuntos
Cardiotônicos/farmacologia , Caveolinas/metabolismo , Coração/efeitos dos fármacos , Hélio/farmacologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Animais , Cardiotônicos/uso terapêutico , Cavéolas/efeitos dos fármacos , Cavéolas/metabolismo , Caveolinas/sangue , Caveolinas/genética , Células Cultivadas , Exossomos/efeitos dos fármacos , Exossomos/metabolismo , Hélio/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controleRESUMO
Caveolins have been recognized over the past few decades as key regulators of cell physiology. They are ubiquitously expressed and regulate a number of processes that ultimately impact efficiency of cellular processes. Though not critical to life, they are central to stress adaptation in a number of organs. The following review will focus specifically on the role of caveolin in stress adaptation in the heart, brain, and eye, three organs that are susceptible to acute and chronic stress and that show as well declining function with age. In addition, we consider some novel molecular mechanisms that may account for this stress adaptation and also offer potential to drive the future of caveolin research.
Assuntos
Adaptação Fisiológica/fisiologia , Caveolinas/metabolismo , Fenômenos Fisiológicos Celulares/fisiologia , Estresse Fisiológico/fisiologia , Animais , Morte Celular/fisiologia , Proliferação de Células/fisiologia , Humanos , Estresse Oxidativo/fisiologiaRESUMO
Studies in vitro and in vivo demonstrate that membrane/lipid rafts and caveolin (Cav) organize progrowth receptors, and, when overexpressed specifically in neurons, Cav-1 augments neuronal signaling and growth and improves cognitive function in adult and aged mice; however, whether neuronal Cav-1 overexpression can preserve motor and cognitive function in the brain trauma setting is unknown. Here, we generated a neuron-targeted Cav-1-overexpressing transgenic (Tg) mouse [synapsin-driven Cav-1 (SynCav1 Tg)] and subjected it to a controlled cortical impact model of brain trauma and measured biochemical, anatomic, and behavioral changes. SynCav1 Tg mice exhibited increased hippocampal expression of Cav-1 and membrane/lipid raft localization of postsynaptic density protein 95, NMDA receptor, and tropomyosin receptor kinase B. When subjected to a controlled cortical impact, SynCav1 Tg mice demonstrated preserved hippocampus-dependent fear learning and memory, improved motor function recovery, and decreased brain lesion volume compared with wild-type controls. Neuron-targeted overexpression of Cav-1 in the adult brain prevents hippocampus-dependent learning and memory deficits, restores motor function after brain trauma, and decreases brain lesion size induced by trauma. Our findings demonstrate that neuron-targeted Cav-1 can be used as a novel therapeutic strategy to restore brain function and prevent trauma-associated maladaptive plasticity.-Egawa, J., Schilling, J. M., Cui, W., Posadas, E., Sawada, A., Alas, B., Zemljic-Harpf, A. E., Fannon-Pavlich, M. J., Mandyam, C. D., Roth, D. M., Patel, H. H., Patel, P. M., Head, B. P. Neuron-specific caveolin-1 overexpression improves motor function and preserves memory in mice subjected to brain trauma.
Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Caveolina 1/metabolismo , Memória/fisiologia , Neurônios/metabolismo , Animais , Lesões Encefálicas Traumáticas/fisiopatologia , Caveolina 1/genética , Condicionamento Psicológico , Medo , Regulação da Expressão Gênica/fisiologia , Terapia Genética , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasticidade Neuronal/fisiologiaRESUMO
The impact of volatile anesthetics on cancer progression has been observed for decades, but sex differences have not been described. Male and female immune systems vary considerably, and the immune system plays an important role in limiting cancer growth. Currently, mouse models describing the impact of volatile anesthetics on cancer growth are limited to same-sex models. In this brief report, we describe a sex-specific impact of isoflurane on melanoma growth observed in wild-type but not in immune-deficient mice. Future experimental designs related to anesthesia and cancer should evaluate the biological variable of sex in a systematic manner.
Assuntos
Anestésicos Inalatórios/efeitos adversos , Imunidade Celular/imunologia , Isoflurano/efeitos adversos , Melanoma/induzido quimicamente , Melanoma/imunologia , Caracteres Sexuais , Animais , Feminino , Imunidade Celular/efeitos dos fármacos , Masculino , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
Many different theories of ageing have been proposed but none has served the unifying purpose of defining a molecular target that can limit the structural and functional decline associated with age that ultimately leads to the demise of the organism. We propose that the search for a molecule with these unique properties must account for regulation of the signalling efficiency of multiple cellular functions that degrade with age due to a loss of a particular protein. We suggest caveolin as one such molecule that serves as a regulator of key processes in signal transduction. We define a particular distinction between cellular senescence and ageing and propose that caveolin plays a distinct role in each of these processes. Caveolin is traditionally thought of as a membrane-localized protein regulating signal transduction via membrane enrichment of specific signalling molecules. Ultimately we focus on two non-canonical roles for caveolin - membrane repair and regulation of mitochondrial function - which may be novel features of stress adaptation, especially in the setting of ageing. The end result of preserving membrane structure and mitochondrial function is maintenance of homeostatic signalling, preserving barrier function, and regulating energy production for cell survival and resilient ageing.
Assuntos
Envelhecimento/fisiologia , Caveolinas/fisiologia , Membrana Celular/fisiologia , Mitocôndrias/fisiologia , Adaptação Fisiológica , Animais , Humanos , Estresse FisiológicoRESUMO
Caveolin-3 (Cav-3) plays a critical role in organizing signaling molecules and ion channels involved in cardiac conduction and metabolism. Mutations in Cav-3 are implicated in cardiac conduction abnormalities and myopathies. Additionally, cardiac-specific overexpression of Cav-3 (Cav-3 OE) is protective against ischemic and hypertensive injury, suggesting a potential role for Cav-3 in basal cardiac electrophysiology and metabolism involved in stress adaptation. We hypothesized that overexpression of Cav-3 may alter baseline cardiac conduction and metabolism. We examined: (1) ECG telemetry recordings at baseline and during pharmacological interventions, (2) ion channels involved in cardiac conduction with immunoblotting and computational modeling, and (3) baseline metabolism in Cav-3 OE and transgene-negative littermate control mice. Cav-3 OE mice had decreased heart rates, prolonged PR intervals, and shortened QTc intervals with no difference in activity compared to control mice. Dobutamine or propranolol did not cause significant changes between experimental groups in maximal (dobutamine) or minimal (propranolol) heart rate. Cav-3 OE mice had an overall lower chronotropic response to atropine. The expression of Kv1.4 and Kv4.3 channels, Nav1.5 channels, and connexin 43 were increased in Cav-3 OE mice. A computational model integrating the immunoblotting results indicated shortened action potential duration in Cav-3 OE mice linking the change in channel expression to the observed electrophysiology phenotype. Metabolic profiling showed no gross differences in VO2, VCO2, respiratory exchange ratio, heat generation, and feeding or drinking. In conclusion, Cav-3 OE mice have changes in ECG intervals, heart rates, and cardiac ion channel expression. These findings give novel mechanistic insights into previously reported Cav-3 dependent cardioprotection.
Assuntos
Caveolina 3/metabolismo , Coração/fisiologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Simulação por Computador , Eletrocardiografia , Frequência Cardíaca/fisiologia , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Camundongos TransgênicosRESUMO
cAMP-dependent protein kinase (PKA) regulates a myriad of functions in the heart, including cardiac contractility, myocardial metabolism,and gene expression. However, a molecular integrator of the PKA response in the heart is unknown. Here, we show that the PKA adaptor A-kinase interacting protein 1 (AKIP1) is up-regulated in cardiac myocytes in response to oxidant stress. Mice with cardiac gene transfer of AKIP1 have enhanced protection to ischemic stress. We hypothesized that this adaptation to stress was mitochondrial dependent. AKIP1 interacted with the mitochondrial localized apoptosis inducing factor (AIF) under both normal and oxidant stress. When cardiac myocytes or whole hearts are exposed to oxidant and ischemic stress, levels of both AKIP1 and AIF were enhanced. AKIP1 is preferentially localized to interfibrillary mitochondria and up-regulated in this cardiac mitochondrial subpopulation on ischemic injury. Mitochondria isolated from AKIP1 gene transferred hearts showed increased mitochondrial localization of AKIP1, decreased reactive oxygen species generation, enhanced calcium tolerance, decreased mitochondrial cytochrome C release,and enhance phosphorylation of mitochondrial PKA substrates on ischemic stress. These observations highlight AKIP1 as a critical molecular regulator and a therapeutic control point for stress adaptation in the heart.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Coração/fisiologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Fator de Indução de Apoptose/metabolismo , Western Blotting , Linhagem Celular Tumoral , Células Cultivadas , Células HEK293 , Células HeLa , Coração/fisiopatologia , Humanos , Peróxido de Hidrogênio/farmacologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Nucleares/genética , Oxidantes/farmacologia , Ligação Proteica , Ratos , Ratos Sprague-DawleyRESUMO
Skeletal muscle sirtuin 1 (SIRT1) expression is reduced under insulin-resistant conditions, such as those resulting from high-fat diet (HFD) feeding and obesity. Herein, we investigated whether constitutive activation of SIRT1 in skeletal muscle prevents HFD-induced muscle insulin resistance. To address this, mice with muscle-specific overexpression of SIRT1 (mOX) and wild-type (WT) littermates were fed a control diet (10% calories from fat) or HFD (60% of calories from fat) for 12 wk. Magnetic resonance imaging and indirect calorimetry were used to measure body composition and energy expenditure, respectively. Whole body glucose metabolism was assessed by oral glucose tolerance test, and insulin-stimulated glucose uptake was measured at a physiological insulin concentration in isolated soleus and extensor digitorum longus muscles. Although SIRT1 was significantly overexpressed in muscle of mOX vs. WT mice, body weight and percent body fat were similarly increased by HFD for both genotypes, and energy expenditure was unaffected by diet or genotype. Importantly, impairments in glucose tolerance and insulin-mediated activation of glucose uptake in skeletal muscle that occurred with HFD feeding were not prevented in mOX mice. In contrast, mOX mice showed enhanced postischemic cardiac functional recovery compared with WT mice, confirming the physiological functionality of the SIRT1 transgene in this mouse model. Together, these results demonstrate that activation of SIRT1 in skeletal muscle alone does not prevent HFD-induced glucose intolerance, weight gain, or insulin resistance.
Assuntos
Dieta Hiperlipídica/efeitos adversos , Intolerância à Glucose/etiologia , Resistência à Insulina , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Sirtuína 1/metabolismo , Regulação para Cima , Adiposidade , Animais , Composição Corporal , Metabolismo Energético , Coração/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias Musculares/metabolismo , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Obesidade/etiologia , Obesidade/fisiopatologia , Consumo de Oxigênio , Distribuição Aleatória , Sirtuína 1/genética , Aumento de PesoRESUMO
Cholesterol-rich caveolar microdomains and associated caveolins influence sarcolemmal ion channel and receptor function and protective stress signaling. However, the importance of membrane cholesterol content to cardiovascular function and myocardial responses to ischemia-reperfusion (I/R) and cardioprotective stimuli are unclear. We assessed the effects of graded cholesterol depletion with methyl-ß-cyclodextrin (MßCD) and lifelong knockout (KO) or overexpression (OE) of caveolin-3 (Cav-3) on cardiac function, I/R tolerance, and opioid receptor (OR)-mediated protection. Langendorff-perfused hearts from young male C57Bl/6 mice were untreated or treated with 0.02-1.0 mM MßCD for 25 min to deplete membrane cholesterol and disrupt caveolae. Hearts were subjected to 25-min ischemia/45-min reperfusion, and the cardioprotective effects of morphine applied either acutely or chronically [sustained ligand-activated preconditioning (SLP)] were assessed. MßCD concentration dependently reduced normoxic contractile function and postischemic outcomes in association with graded (10-30%) reductions in sarcolemmal cholesterol. Cardioprotection with acute morphine was abolished with ≥20 µM MßCD, whereas SLP was more robust and only inhibited with ≥200 µM MßCD. Deletion of Cav-3 also reduced, whereas Cav-3 OE improved, myocardial I/R tolerance. Protection via SLP remained equally effective in Cav-3 KO mice and was additive with innate protection arising with Cav-3 OE. These data reveal the membrane cholesterol dependence of normoxic myocardial and coronary function, I/R tolerance, and OR-mediated cardioprotection in murine hearts (all declining with cholesterol depletion). In contrast, baseline function appears insensitive to Cav-3, whereas cardiac I/R tolerance parallels Cav-3 expression. Novel SLP appears unique, being less sensitive to cholesterol depletion than acute OR protection and arising independently of Cav-3 expression.
Assuntos
Cardiotônicos/farmacologia , Caveolina 3/metabolismo , Colesterol/metabolismo , Morfina/farmacologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Sarcolema/efeitos dos fármacos , Animais , Cavéolas/efeitos dos fármacos , Cavéolas/metabolismo , Caveolina 3/deficiência , Caveolina 3/genética , Linhagem Celular , Colesterol/deficiência , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Contração Miocárdica/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/metabolismo , Sarcolema/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos , Pressão Ventricular/efeitos dos fármacos , beta-Ciclodextrinas/farmacologiaRESUMO
BACKGROUND: Traumatic brain injury (TBI) enhances pro-inflammatory responses, neuronal loss and long-term behavioral deficits. Caveolins (Cavs) are regulators of neuronal and glial survival signaling. Previously we showed that astrocyte and microglial activation is increased in Cav-1 knock-out (KO) mice and that Cav-1 and Cav-3 modulate microglial morphology. We hypothesized that Cavs may regulate cytokine production after TBI. METHODS: Controlled cortical impact (CCI) model of TBI (3 m/second; 1.0 mm depth; parietal cortex) was performed on wild-type (WT; C57Bl/6), Cav-1 KO, and Cav-3 KO mice. Histology and immunofluorescence microscopy (lesion volume, glia activation), behavioral tests (open field, balance beam, wire grip, T-maze), electrophysiology, electron paramagnetic resonance, membrane fractionation, and multiplex assays were performed. Data were analyzed by unpaired t tests or analysis of variance (ANOVA) with post-hoc Bonferroni's multiple comparison. RESULTS: CCI increased cortical and hippocampal injury and decreased expression of MLR-localized synaptic proteins (24 hours), enhanced NADPH oxidase (Nox) activity (24 hours and 1 week), enhanced polysynaptic responses (1 week), and caused hippocampal-dependent learning deficits (3 months). CCI increased brain lesion volume in both Cav-3 and Cav-1 KO mice after 24 hours (P < 0.0001, n = 4; one-way ANOVA). Multiplex array revealed a significant increase in expression of IL-1ß, IL-9, IL-10, KC (keratinocyte chemoattractant), and monocyte chemoattractant protein 1 (MCP-1) in ipsilateral hemisphere and IL-9, IL-10, IL-17, and macrophage inflammatory protein 1 alpha (MIP-1α) in contralateral hemisphere of WT mice after 4 hours. CCI increased IL-2, IL-6, KC and MCP-1 in ipsilateral and IL-6, IL-9, IL-17 and KC in contralateral hemispheres in Cav-1 KO and increased all 10 cytokines/chemokines in both hemispheres except for IL-17 (ipsilateral) and MIP-1α (contralateral) in Cav-3 KO (versus WT CCI). Cav-3 KO CCI showed increased IL-1ß, IL-9, KC, MCP-1, MIP-1α, and granulocyte-macrophage colony-stimulating factor in ipsilateral and IL-1ß, IL-2, IL-9, IL-10, and IL-17 in contralateral hemispheres (P = 0.0005, n = 6; two-way ANOVA) compared to Cav-1 KO CCI. CONCLUSION: CCI caused astrocyte and microglial activation and hippocampal neuronal injury. Cav-1 and Cav-3 KO exhibited enhanced lesion volume and cytokine/chemokine production after CCI. These findings suggest that Cav isoforms may regulate neuroinflammatory responses and neuroprotection following TBI.
Assuntos
Lesões Encefálicas/complicações , Lesões Encefálicas/patologia , Encéfalo/patologia , Caveolina 1/deficiência , Caveolina 3/deficiência , Encefalite/complicações , Animais , Caveolina 1/genética , Caveolina 3/genética , Células Cultivadas , Transtornos Cognitivos/etiologia , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalite/genética , Lateralidade Funcional , Hipocampo/citologia , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transtornos dos Movimentos/etiologia , NADPH Oxidases/metabolismo , Neurônios/fisiologia , Sinaptossomos/metabolismo , Sinaptossomos/patologiaRESUMO
BACKGROUND: Caveolae are a nexus for protective signaling. Trafficking of caveolin to mitochondria is essential for adaptation to cellular stress though the trafficking mechanisms remain unknown. The authors hypothesized that G protein-coupled receptor/inhibitory G protein (Gi) activation leads to caveolin trafficking to mitochondria. METHODS: Mice were exposed to isoflurane or oxygen vehicle (30 min, ± 36 h pertussis toxin pretreatment, an irreversible Gi inhibitor). Caveolin trafficking, cardioprotective "survival kinase" signaling, mitochondrial function, and ultrastructure were assessed. RESULTS: Isoflurane increased cardiac caveolae (n = 8 per group; data presented as mean ± SD for Ctrl versus isoflurane; [caveolin-1: 1.78 ± 0.12 vs. 3.53 ± 0.77; P < 0.05]; [caveolin-3: 1.68 ± 0.29 vs. 2.67 ± 0.46; P < 0.05]) and mitochondrial caveolin levels (n = 16 per group; [caveolin-1: 0.87 ± 0.18 vs. 1.89 ± .19; P < 0.05]; [caveolin-3: 1.10 ± 0.29 vs. 2.26 ± 0.28; P < 0.05]), and caveolin-enriched mitochondria exhibited improved respiratory function (n = 4 per group; [state 3/complex I: 10.67 ± 1.54 vs. 37.6 ± 7.34; P < 0.05]; [state 3/complex II: 37.19 ± 4.61 vs. 71.48 ± 15.28; P < 0.05]). Isoflurane increased phosphorylation of survival kinases (n = 8 per group; [protein kinase B: 0.63 ± 0.20 vs. 1.47 ± 0.18; P < 0.05]; [glycogen synthase kinase 3ß: 1.23 ± 0.20 vs. 2.35 ± 0.20; P < 0.05]). The beneficial effects were blocked by pertussis toxin. CONCLUSIONS: Gi proteins are involved in trafficking caveolin to mitochondria to enhance stress resistance. Agents that target Gi activation and caveolin trafficking may be viable cardioprotective agents.
Assuntos
Caveolinas/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/fisiologia , Mitocôndrias/metabolismo , Animais , Cavéolas/efeitos dos fármacos , Cavéolas/fisiologia , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Isoflurano/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Toxina Pertussis/farmacologia , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologiaRESUMO
BACKGROUND: Post-traumatic stress disorder (PTSD) and pain have a well-documented high comorbidity; however, the underlying mechanisms of this comorbidity are currently poorly understood. The aim of this psychophysical study was to investigate the behavioral response to a prolonged suprathreshold pain stimulus in subjects with combat-related PTSD and combat controls (CC) for clinical evidence of central sensitization. METHODS: Ten male subjects with current PTSD related to combat and 11 CC male subjects underwent baseline quantitative sensory testing (QST), temporal pain summation, and psychological profiling followed by an intramuscular injection of capsaicin into the quadriceps muscle. RESULTS: There was no significant between-group difference for the initial maximal pain response or an initial pain reduction for the first 15 minutes postinjection on QST or pain ratings. However, we observed significantly higher scores in the PTSD group for the second 15 minutes postinjection on both pain intensity and pain unpleasantness ratings. Assessment of temporal summation to repetitive pressure stimuli showed significantly higher subjective pain in the PTSD group. CONCLUSION: These findings are consistent with a significantly higher degree of acute central sensitization in individuals with PTSD. Increased acute central sensitization may underlie increased vulnerability for developing pain-related conditions following combat trauma.
Assuntos
Dor Aguda/psicologia , Sensibilização do Sistema Nervoso Central , Dor Crônica/psicologia , Limiar da Dor/psicologia , Transtornos de Estresse Pós-Traumáticos/psicologia , Dor Aguda/epidemiologia , Adulto , Ansiedade/epidemiologia , Ansiedade/psicologia , Capsaicina/administração & dosagem , Catastrofização/epidemiologia , Catastrofização/psicologia , Dor Crônica/epidemiologia , Comorbidade , Depressão/epidemiologia , Depressão/psicologia , Medicina Baseada em Evidências , Humanos , Hiperalgesia/psicologia , Masculino , Pressão/efeitos adversos , Qualidade de Vida , Fármacos do Sistema Sensorial/administração & dosagem , Transtornos de Estresse Pós-Traumáticos/epidemiologia , Inquéritos e Questionários , Adulto JovemRESUMO
OBJECTIVES: Patients with left-sided heart dysfunction and volume overload often have associated elevations in vasopressin from neuroendocrine activation. The authors investigated perioperative levels of vasopressin in patients with isolated right-sided heart dysfunction from chronic thromboembolic pulmonary hypertension. DESIGN: Prospective, observational study. SETTING: Single center, tertiary hospital. PARTICIPANTS: Patients with chronic thromboembolic pulmonary hypertension undergoing pulmonary thromboendarterectomy. INTERVENTIONS: Vasopressin levels were measured in 22 patients during the perioperative period. MEASUREMENTS AND MAIN RESULTS: Vasopressin was undetectable in 8/22 patients at baseline. As a group, vasopressin levels at baseline and after induction of anesthesia were 0.8 pg/mL (median; 0.5-1.5, interquartile range of 25% and 75%) and 0.7 pg/mL (median; 0.5-1.4, interquartile range of 25% and 75%), respectively. During cardiopulmonary bypass (CPB), vasopressin increased to 13.9 pg/mL (median; 6.7-19.9, interquartile range of 25% and 75%). Vasopressin remained elevated after deep hypothermic circulatory arrest (DHCA) at 10.5 pg/mL (median; 6.5-19.9 interquartile range of 25% and 75%) and after CPB at 19.9 pg/mL (median; 11.1-19.9 interquartile range of 25% and 75%). CONCLUSIONS: Vasopressin levels in PTE patients are in the low-to-normal range at baseline and may be a clinically relevant issue in the hemodynamic management of PTE.
Assuntos
Dextrocardia/sangue , Hipertensão Pulmonar/sangue , Embolia Pulmonar/sangue , Vasopressinas/sangue , Adulto , Idoso , Ponte Cardiopulmonar , Dextrocardia/diagnóstico por imagem , Dextrocardia/cirurgia , Feminino , Parada Cardíaca Induzida , Hemodinâmica/fisiologia , Humanos , Hipertensão Pulmonar/diagnóstico por imagem , Hipertensão Pulmonar/etiologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Embolia Pulmonar/complicações , Embolia Pulmonar/diagnóstico por imagem , Ultrassonografia , Adulto JovemRESUMO
Sensory function of small peripheral nerve fiber was assessed by means of quantitative sensory testing (QST) during which sensory stimulation was provided using diode laser (DL) in patients suffering from painful neuropathy (PN) and compared with symptom-free healthy controls (HC). Based on previous research work using DL stimulation, parameters that demonstrated safe and specific activation of A-delta, which were distinct from stimulation parameters for the activation of C-fibers, were utilized in this study. Results of this study demonstrated that this differential activation pointed to the impaired function of A-delta fibers while C-fiber function was unaffected. Stimulation of HC reproduced previously published results, and stimulation during this study was safe also without any dermal effect in patients with PN and in HC. Parameters used in this study were demonstrated in previous preclinical rodent study identical differential effect on activation of A-delta and C-fibers, and as such, DL is an ideal tool for translational pain research where specific activation of A-delta or C-fibers, or both, is required.