Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 478: 116709, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37797845

RESUMO

Arsenic occurs naturally in the environment and humans can be exposed through food, drinking water and inhalation of air-borne particles. Arsenic exposure is associated with cardiovascular, pulmonary, renal, immunologic, and developmental toxicities as well as carcinogenesis. Arsenic displays dose-depen toxicities in target organs or tissues with elevated levels of arsenic. Zinc is an essential micronutrient with proposed protective benefits due to its antioxidant properties, integration into zinc-containing proteins and zinc-related immune signaling. In this study, we tested levels of arsenic and zinc in plasma, kidney, liver, and spleen as model tissues after chronic (42-day) treatment with either arsenite, zinc, or in combination. Arsenite exposure had minimal impact on tissue zinc levels with the exception of the kidney. Conversely, zinc supplementation of arsenite-exposed mice reduced the amount of arsenic detected in all tissues tested. Expression of transporters associated with zinc or arsenic influx and efflux were evaluated under each treatment condition. Significant effects of arsenite exposure on zinc transporter expression displayed tissue selectivity for liver and kidney, and was restricted to Zip10 and Zip14, respectively. Arsenite also interacted with zinc co-exposure for Zip10 expression in liver tissue. Pairwise comparisons show neither arsenite nor zinc supplementation alone significantly altered expression of transporters utilized by arsenic. However, significant interactions between arsenite and zinc were evident for Aqp7 and Mrp1 in a tissue selective manner. These findings illustrate interactions between arsenite and zinc leading to changes in tissue metal level and suggest a potential mechanism by which zinc may offer protection from arsenic toxicities.


Assuntos
Arsênio , Arsenitos , Humanos , Camundongos , Animais , Arsênio/toxicidade , Arsenitos/toxicidade , Zinco/metabolismo , Distribuição Tecidual , Suplementos Nutricionais
2.
Toxicol Appl Pharmacol ; 454: 116252, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36152676

RESUMO

Uranium is a naturally occurring element found in the environment as a mixture of isotopes with differing radioactive properties. Enrichment of mined material results in depleted uranium waste with substantially reduced radioactivity but retains the capacity for chemical toxicity. Uranium mine and milling waste are dispersed by wind and rain leading to environmental exposures through soil, air, and water contamination. Uranium exposure is associated with numerous adverse health outcomes in humans, yet there is limited understanding of the effects of depleted uranium on the immune system. The purpose of this review is to summarize findings on uranium immunotoxicity obtained from cell, rodent and human population studies. We also highlight how each model contributes to an understanding of mechanisms that lead to immunotoxicity and limitations inherent within each system. Information from population, animal, and laboratory studies will be needed to significantly expand our knowledge of the contributions of depleted uranium to immune dysregulation, which may then inform prevention or intervention measures for exposed communities.


Assuntos
Urânio , Animais , Exposição Ambiental/efeitos adversos , Humanos , Mineração , Solo , Urânio/toxicidade , Água
3.
Toxicol Rep ; 8: 1917-1929, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926170

RESUMO

Communities in the western region of the United States experience environmental exposure to metal mixtures from living in proximity to numerous unremediated abandoned uranium mines. Metals including arsenic and uranium co-occur in and around these sites at levels higher than the United States Environmental Protection Agency maximum contaminant levels. To address the potential effect of these metals on the activation of CD4+ T-cells, we used RNA sequencing methods to determine the effect of exposure to sodium arsenite (1 µM and 10 µM), uranyl acetate (3 µM and 30 µM) or a mixture of sodium arsenite and uranyl acetate (1 µM sodium arsenite + 3 µM uranyl acetate). Sodium arsenite induced a dose dependent effect on activation associated gene expression; targeting immune response genes at the lower dose. Increases in oxidative stress gene expression were observed with both sodium arsenite doses. While uranyl acetate alone did not significantly alter activation associated gene expression, the mixture of uranyl acetate with sodium arsenite demonstrated a combined effect relative to sodium arsenite alone. The results demonstrate the need to investigate metal and metalloid mixtures at environmentally relevant concentrations to better understand the toxicological impact of these mixtures on T-cell activation, function and immune dysregulation.

4.
Toxicol Lett ; 333: 269-278, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32866568

RESUMO

Elevated levels of arsenic and uranium have been detected in water sources near abandoned uranium mines in the Southwest. Evidence suggests uranium exposure increases the likelihood of immune dysfunction and this study investigates the impact of arsenic and uranium on human immune cell lines. Concentration-dependent cytotoxicity occurred following exposure to arsenite, whereas cells remained viable after 48 -h treatment with up to 100 µM uranyl acetate despite uptake of uranium into cells. Arsenite stimulated an oxidative stress response as detected by Nrf-2 nuclear accumulation and induction of HMOX-1 and NQO1, which was not detected with up to 30 µM uranyl acetate. Cellular oxidative stress can promote DNA damage and arsenite, but not uranium, stimulated DNA damage as measured by pH2AX. Arsenic enhanced the cytotoxic response to etoposide suggesting an inhibition of DNA repair, unlike uranium. Similarly, uranium did not inhibit PARP-1 activity. Because uranium reportedly stimulates oxidative stress, DNA damage and cytotoxicity in adherent epithelial cells, the current study suggests distinct cell type differences in response to uranium that may relate to generation of oxidative stress and associated downstream consequences. Delineating the actions of uranium across different cell targets will be important for understanding the potential health effects of uranium exposures.


Assuntos
Arsenitos/toxicidade , Dano ao DNA , Compostos Organometálicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Monitoramento Biológico/métodos , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Reparo do DNA , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Humanos , Células Jurkat , Mineração , Compostos Organometálicos/metabolismo , Estresse Oxidativo/genética , Linfócitos T/metabolismo , Linfócitos T/patologia , Células THP-1
5.
J Vis Exp ; (100): e52715, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-26132311

RESUMO

In situ recovery (ISR) is the predominant method of uranium extraction in the United States. During ISR, uranium is leached from an ore body and extracted through ion exchange. The resultant production bleed water (PBW) contains contaminants such as arsenic and other heavy metals. Samples of PBW from an active ISR uranium facility were treated with cupric oxide nanoparticles (CuO-NPs). CuO-NP treatment of PBW reduced priority contaminants, including arsenic, selenium, uranium, and vanadium. Untreated and CuO-NP treated PBW was used as the liquid component of the cell growth media and changes in viability were determined by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay in human embryonic kidney (HEK 293) and human hepatocellular carcinoma (Hep G2) cells. CuO-NP treatment was associated with improved HEK and HEP cell viability. Limitations of this method include dilution of the PBW by growth media components and during osmolality adjustment as well as necessary pH adjustment. This method is limited in its wider context due to dilution effects and changes in the pH of the PBW which is traditionally slightly acidic however; this method could have a broader use assessing CuO-NP treatment in more neutral waters.


Assuntos
Cobre/química , Nanopartículas/química , Oligoelementos/isolamento & purificação , Urânio/isolamento & purificação , Urânio/toxicidade , Contaminação Radioativa da Água/análise , Sobrevivência Celular/efeitos dos fármacos , Indústrias Extrativas e de Processamento , Células HEK293 , Células Hep G2 , Humanos , Rim/citologia , Rim/efeitos dos fármacos , Fígado/citologia , Fígado/efeitos dos fármacos , Oligoelementos/química , Urânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA