Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34753820

RESUMO

The COVID-19 global pandemic and associated government lockdowns dramatically altered human activity, providing a window into how changes in individual behavior, enacted en masse, impact atmospheric composition. The resulting reductions in anthropogenic activity represent an unprecedented event that yields a glimpse into a future where emissions to the atmosphere are reduced. Furthermore, the abrupt reduction in emissions during the lockdown periods led to clearly observable changes in atmospheric composition, which provide direct insight into feedbacks between the Earth system and human activity. While air pollutants and greenhouse gases share many common anthropogenic sources, there is a sharp difference in the response of their atmospheric concentrations to COVID-19 emissions changes, due in large part to their different lifetimes. Here, we discuss several key takeaways from modeling and observational studies. First, despite dramatic declines in mobility and associated vehicular emissions, the atmospheric growth rates of greenhouse gases were not slowed, in part due to decreased ocean uptake of CO2 and a likely increase in CH4 lifetime from reduced NO x emissions. Second, the response of O3 to decreased NO x emissions showed significant spatial and temporal variability, due to differing chemical regimes around the world. Finally, the overall response of atmospheric composition to emissions changes is heavily modulated by factors including carbon-cycle feedbacks to CH4 and CO2, background pollutant levels, the timing and location of emissions changes, and climate feedbacks on air quality, such as wildfires and the ozone climate penalty.


Assuntos
Poluição do Ar , Atmosfera/química , COVID-19/psicologia , Gases de Efeito Estufa , Modelos Teóricos , COVID-19/epidemiologia , Dióxido de Carbono , Mudança Climática , Humanos , Metano , Óxidos de Nitrogênio , Ozônio
2.
Opt Express ; 30(14): 24326-24351, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-36236990

RESUMO

The atmospheric concentration of methane has more than doubled since the start of the Industrial Revolution. Methane is the second-most-abundant greenhouse gas created by human activities and a major driver of climate change. This APS-Optica report provides a technical assessment of the current state of monitoring U.S. methane emissions from oil and gas operations, which accounts for roughly 30% of U.S. anthropogenic methane emissions. The report identifies current technological and policy gaps and makes recommendations for the federal government in three key areas: methane emissions detection, reliable and systematized data and models to support mitigation measures, and effective regulation.


Assuntos
Poluentes Atmosféricos , Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Humanos , Metano/análise
3.
Global Biogeochem Cycles ; 36(3): e2021GB007162, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35865754

RESUMO

The inventory and variability of oceanic dissolved inorganic carbon (DIC) is driven by the interplay of physical, chemical, and biological processes. Quantifying the spatiotemporal variability of these drivers is crucial for a mechanistic understanding of the ocean carbon sink and its future trajectory. Here, we use the Estimating the Circulation and Climate of the Ocean-Darwin ocean biogeochemistry state estimate to generate a global-ocean, data-constrained DIC budget and investigate how spatial and seasonal-to-interannual variability in three-dimensional circulation, air-sea CO2 flux, and biological processes have modulated the ocean sink for 1995-2018. Our results demonstrate substantial compensation between budget terms, resulting in distinct upper-ocean carbon regimes. For example, boundary current regions have strong contributions from vertical diffusion while equatorial regions exhibit compensation between upwelling and biological processes. When integrated across the full ocean depth, the 24-year DIC mass increase of 64 Pg C (2.7 Pg C year-1) primarily tracks the anthropogenic CO2 growth rate, with biological processes providing a small contribution of 2% (1.4 Pg C). In the upper 100 m, which stores roughly 13% (8.1 Pg C) of the global increase, we find that circulation provides the largest DIC gain (6.3 Pg C year-1) and biological processes are the largest loss (8.6 Pg C year-1). Interannual variability is dominated by vertical advection in equatorial regions, with the 1997-1998 El Niño-Southern Oscillation causing the largest year-to-year change in upper-ocean DIC (2.1 Pg C). Our results provide a novel, data-constrained framework for an improved mechanistic understanding of natural and anthropogenic perturbations to the ocean sink.

4.
Proc Natl Acad Sci U S A ; 116(24): 11640-11645, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31138693

RESUMO

Northern hemisphere evergreen forests assimilate a significant fraction of global atmospheric CO2 but monitoring large-scale changes in gross primary production (GPP) in these systems is challenging. Recent advances in remote sensing allow the detection of solar-induced chlorophyll fluorescence (SIF) emission from vegetation, which has been empirically linked to GPP at large spatial scales. This is particularly important in evergreen forests, where traditional remote-sensing techniques and terrestrial biosphere models fail to reproduce the seasonality of GPP. Here, we examined the mechanistic relationship between SIF retrieved from a canopy spectrometer system and GPP at a winter-dormant conifer forest, which has little seasonal variation in canopy structure, needle chlorophyll content, and absorbed light. Both SIF and GPP track each other in a consistent, dynamic fashion in response to environmental conditions. SIF and GPP are well correlated (R2 = 0.62-0.92) with an invariant slope over hourly to weekly timescales. Large seasonal variations in SIF yield capture changes in photoprotective pigments and photosystem II operating efficiency associated with winter acclimation, highlighting its unique ability to precisely track the seasonality of photosynthesis. Our results underscore the potential of new satellite-based SIF products (TROPOMI, OCO-2) as proxies for the timing and magnitude of GPP in evergreen forests at an unprecedented spatiotemporal resolution.


Assuntos
Fotossíntese/fisiologia , Ciclo do Carbono/fisiologia , Clorofila/fisiologia , Clima , Ecossistema , Monitoramento Ambiental/métodos , Fluorescência , Florestas , Complexo de Proteína do Fotossistema II/fisiologia , Estações do Ano , Luz Solar
5.
Geophys Res Lett ; 48(22): e2021GL095396, 2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34924639

RESUMO

We assess the detectability of COVID-like emissions reductions in global atmospheric CO2 concentrations using a suite of large ensembles conducted with an Earth system model. We find a unique fingerprint of COVID in the simulated growth rate of CO2 sampled at the locations of surface measurement sites. Negative anomalies in growth rates persist from January 2020 through December 2021, reaching a maximum in February 2021. However, this fingerprint is not formally detectable unless we force the model with unrealistically large emissions reductions (2 or 4 times the observed reductions). Internal variability and carbon-concentration feedbacks obscure the detectability of short-term emission reductions in atmospheric CO2. COVID-driven changes in the simulated, column-averaged dry air mole fractions of CO2 are eclipsed by large internal variability. Carbon-concentration feedbacks begin to operate almost immediately after the emissions reduction; these feedbacks reduce the emissions-driven signal in the atmosphere carbon reservoir and further confound signal detection.

6.
Proc Natl Acad Sci U S A ; 115(31): 7860-7868, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-29987011

RESUMO

The impact of human emissions of carbon dioxide and methane on climate is an accepted central concern for current society. It is increasingly evident that atmospheric concentrations of carbon dioxide and methane are not simply a function of emissions but that there are myriad feedbacks forced by changes in climate that affect atmospheric concentrations. If these feedbacks change with changing climate, which is likely, then the effect of the human enterprise on climate will change. Quantifying, understanding, and articulating the feedbacks within the carbon-climate system at the process level are crucial if we are to employ Earth system models to inform effective mitigation regimes that would lead to a stable climate. Recent advances using space-based, more highly resolved measurements of carbon exchange and its component processes-photosynthesis, respiration, and biomass burning-suggest that remote sensing can add key spatial and process resolution to the existing in situ systems needed to provide enhanced understanding and advancements in Earth system models. Information about emissions and feedbacks from a long-term carbon-climate observing system is essential to better stewardship of the planet.

7.
New Phytol ; 224(2): 570-584, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31112309

RESUMO

Global ecology - the study of the interactions among the Earth's ecosystems, land, atmosphere and oceans - depends crucially on global observations: this paper focuses on space-based observations of global terrestrial ecosystems. Early global ecology relied on an extrapolation of detailed site-level observations, using models of increasing complexity. Modern global ecology has been enabled largely by vegetation indices (greenness) from operational space-based imagery but current capabilities greatly expand scientific possibilities. New observations from spacecraft in orbit allowed an estimation of gross carbon fluxes, photosynthesis, biomass burning, evapotranspiration and biomass, to create virtual eddy covariance sites in the sky. Planned missions will reveal the dimensions of the diversity of life itself. These observations will improve our understanding of the global productivity and carbon storage, land use, carbon cycle-climate feedback, diversity-productivity relationships and enable improved climate forecasts. Advances in remote sensing challenge ecologists to relate information organised by biome and species to new data arrayed by pixels and develop theory to address previously unobserved scales.


Assuntos
Planeta Terra , Ecossistema , Modelos Biológicos , Plantas , Imagens de Satélites
8.
Proc Natl Acad Sci U S A ; 112(2): 436-41, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25548156

RESUMO

Feedbacks from the terrestrial carbon cycle significantly affect future climate change. The CO2 concentration dependence of global terrestrial carbon storage is one of the largest and most uncertain feedbacks. Theory predicts the CO2 effect should have a tropical maximum, but a large terrestrial sink has been contradicted by analyses of atmospheric CO2 that do not show large tropical uptake. Our results, however, show significant tropical uptake and, combining tropical and extratropical fluxes, suggest that up to 60% of the present-day terrestrial sink is caused by increasing atmospheric CO2. This conclusion is consistent with a validated subset of atmospheric analyses, but uncertainty remains. Improved model diagnostics and new space-based observations can reduce the uncertainty of tropical and temperate zone carbon flux estimates. This analysis supports a significant feedback to future atmospheric CO2 concentrations from carbon uptake in terrestrial ecosystems caused by rising atmospheric CO2 concentrations. This feedback will have substantial tropical contributions, but the magnitude of future carbon uptake by tropical forests also depends on how they respond to climate change and requires their protection from deforestation.


Assuntos
Ciclo do Carbono/fisiologia , Dióxido de Carbono/metabolismo , Atmosfera , Mudança Climática , Ecossistema , Retroalimentação Fisiológica , Florestas , Modelos Biológicos , Fotossíntese , Clima Tropical
9.
Nature ; 534(7608): 483-4, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27309806
10.
Ecology ; 97(11): 3244, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27870045

RESUMO

Megafires have lasting social, ecological, and economic impacts and are increasing in the western contiguous United States. Because of their infrequent nature, there is a limited sample of megafires to investigate their unique behavior, drivers, and relationship to forest management practices. One approach is to characterize critical information pre-, during, and post-fire using remote sensing. In August 2013, the Rim Fire burned 104,131 ha and in September 2014, the King Fire burned 39,545 ha. Both fires occurred in California's Sierra Nevada. The areas burned by these fires were fortuitously surveyed by airborne campaigns, which provided the most recent remote sensing technologies not currently available from satellite. Technologies include an imaging spectrometer spanning the visible to shortwave infrared (0.38-2.5 µm), a multispectral, high-spatial resolution thermal infrared (3.5-13 µm) spectroradiometer, and Light Detection and Ranging that provide spatial resolutions of pixels from 1 × 1 m to 35 × 35 m. Because of the unique information inherently derived from these technologies before the fires, the areas were subsequently surveyed after the fires. We processed and provide free dissemination of these airborne datasets as products of surface reflectance, spectral metrics and forest structural metrics ( http://dx.doi.org/10.3334/ORNLDAAC/1288). These data products provide a unique opportunity to study relationships among and between remote sensing observations and fuel and fire characteristics (e.g., fuel type, condition, structure, and fire severity). The novelty of these data is not only in the unprecedented types of information available from them before, during, and after two megafires, but also in the synergistic use of multiple state of the art technologies for characterizing the environment. The synergy of these data can provide novel information that can improve maps of fuel type, structure, abundance, and condition that may improve predictions of megafire behavior and effects, thus aiding management before, during, and after such events. Key questions that these data could address include: What drives, extinguishes, and results from megafires? How does megafire behavior relate to fire and fuel management? How does the size and severity of a megafire affect the ecological recovery of the system?


Assuntos
Incêndios , Imagens de Satélites , California , Espectrofotometria Infravermelho
11.
Ecol Appl ; 31(8): e02452, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34536253
12.
Ecol Appl ; 31(6): e02353, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34181302

Assuntos
Ecologia
13.
Glob Chang Biol ; 21(5): 1762-76, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25472464

RESUMO

Terrestrial ecosystem and carbon cycle feedbacks will significantly impact future climate, but their responses are highly uncertain. Models and tipping point analyses suggest the tropics and arctic/boreal zone carbon-climate feedbacks could be disproportionately large. In situ observations in those regions are sparse, resulting in high uncertainties in carbon fluxes and fluxes. Key parameters controlling ecosystem carbon responses, such as plant traits, are also sparsely observed in the tropics, with the most diverse biome on the planet treated as a single type in models. We analyzed the spatial distribution of in situ data for carbon fluxes, stocks and plant traits globally and also evaluated the potential of remote sensing to observe these quantities. New satellite data products go beyond indices of greenness and can address spatial sampling gaps for specific ecosystem properties and parameters. Because environmental conditions and access limit in situ observations in tropical and arctic/boreal environments, use of space-based techniques can reduce sampling bias and uncertainty about tipping point feedbacks to climate. To reliably detect change and develop the understanding of ecosystems needed for prediction, significantly, more data are required in critical regions. This need can best be met with a strategic combination of remote and in situ data, with satellite observations providing the dense sampling in space and time required to characterize the heterogeneity of ecosystem structure and function.


Assuntos
Ciclo do Carbono/fisiologia , Ecossistema , Modelos Teóricos , Plantas/química , Imagens de Satélites/métodos , Clorofila/análise , Lignina/análise , Nitrogênio/análise , Imagens de Satélites/tendências
14.
Ecol Appl ; 30(4): e02136, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32432794
15.
Oecologia ; 177(4): 925-34, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25680334

RESUMO

Ecologists are increasingly tackling questions that require significant infrastucture, large experiments, networks of observations, and complex data and computation. Key hypotheses in ecology increasingly require more investment, and larger data sets to be tested than can be collected by a single investigator's or s group of investigator's labs, sustained for longer than a typical grant. Large-scale projects are expensive, so their scientific return on the investment has to justify the opportunity cost-the science foregone because resources were expended on a large project rather than supporting a number of individual projects. In addition, their management must be accountable and efficient in the use of significant resources, requiring the use of formal systems engineering and project management to mitigate risk of failure. Mapping the scientific method into formal project management requires both scientists able to work in the context, and a project implementation team sensitive to the unique requirements of ecology. Sponsoring agencies, under pressure from external and internal forces, experience many pressures that push them towards counterproductive project management but a scientific community aware and experienced in large project science can mitigate these tendencies. For big ecology to result in great science, ecologists must become informed, aware and engaged in the advocacy and governance of large ecological projects.


Assuntos
Ecologia/métodos , Pesquisa , Humanos , Ciência/métodos
16.
Nature ; 455(7211): 383-6, 2008 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-18800137

RESUMO

Terrestrial ecosystems control carbon dioxide fluxes to and from the atmosphere through photosynthesis and respiration, a balance between net primary productivity and heterotrophic respiration, that determines whether an ecosystem is sequestering carbon or releasing it to the atmosphere. Global and site-specific data sets have demonstrated that climate and climate variability influence biogeochemical processes that determine net ecosystem carbon dioxide exchange (NEE) at multiple timescales. Experimental data necessary to quantify impacts of a single climate variable, such as temperature anomalies, on NEE and carbon sequestration of ecosystems at interannual timescales have been lacking. This derives from an inability of field studies to avoid the confounding effects of natural intra-annual and interannual variability in temperature and precipitation. Here we present results from a four-year study using replicate 12,000-kg intact tallgrass prairie monoliths located in four 184-m(3) enclosed lysimeters. We exposed 6 of 12 monoliths to an anomalously warm year in the second year of the study and continuously quantified rates of ecosystem processes, including NEE. We find that warming decreases NEE in both the extreme year and the following year by inducing drought that suppresses net primary productivity in the extreme year and by stimulating heterotrophic respiration of soil biota in the subsequent year. Our data indicate that two years are required for NEE in the previously warmed experimental ecosystems to recover to levels measured in the control ecosystems. This time lag caused net ecosystem carbon sequestration in previously warmed ecosystems to be decreased threefold over the study period, compared with control ecosystems. Our findings suggest that more frequent anomalously warm years, a possible consequence of increasing anthropogenic carbon dioxide levels, may lead to a sustained decrease in carbon dioxide uptake by terrestrial ecosystems.


Assuntos
Dióxido de Carbono/metabolismo , Clima , Ecossistema , Temperatura Alta , Desastres , Fatores de Tempo
17.
J Environ Qual ; 43(6): 1963-71, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25602213

RESUMO

As the world's population increases, marginal lands such as drylands are likely to become more important for food production. One proven strategy for improving crop production in drylands involves shifting from conventional tillage to no-till to increase water use efficiency, especially when this shift is coupled with more intensive crop rotations. Practices such as no-till that reduce soil disturbance and increase crop residues may promote C and N storage in soil organic matter, thus promoting N retention and reducing N losses. By sampling soils 15 yr after a N tracer addition, this study compared long-term soil N retention across several agricultural management strategies in current and converted shortgrass steppe ecosystems: grazed and ungrazed native grassland, occasionally mowed planted perennial grassland, and three cropping intensities of no-till dryland cropping. We also examined effects of the environmental variables site location and topography on N retention. Overall, the long-term soil N retention of >18% in these managed semiarid ecosystems was high compared with published values for other cropped or grassland ecosystems. Cropping practices strongly influenced long-term N retention, with planted perennial grass systems retaining >90% of N in soil compared with 30% for croplands. Grazing management, topography, and site location had smaller effects on long-term N retention. Estimated 15-yr N losses were low for intact and cropped systems. This work suggests that semiarid perennial grass ecosystems are highly N retentive and that increased intensity of semiarid land management can increase the amount of protein harvested without increasing N losses.

18.
Ecol Appl ; 28(4): 869-870, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29727509
19.
J Geophys Res Biogeosci ; 128(1): e2021JG006471, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37362830

RESUMO

Observations of planet Earth from space are a critical resource for science and society. Satellite measurements represent very large investments and United States (US) agencies organize their effort to maximize the return on that investment. The US National Research Council conducts a survey of Earth science and applications to prioritize observations for the coming decade. The most recent survey prioritized a visible to shortwave infrared imaging spectrometer and a multispectral thermal infrared imager to meet a range of needs for studying Surface Biology and Geology (SBG). SBG will be the premier integrated observatory for observing the emerging impacts of climate change by characterizing the diversity of plant life and resolving chemical and physiological signatures. It will address wildfire risk, behavior, and recovery as well as responses to hazards such as oil spills, toxic minerals in minelands, harmful algal blooms, landslides, and other geological hazards. The SBG team analyzed needed instrument characteristics (spatial, temporal, and spectral resolutions, measurement uncertainty) and assessed the cost, mass, power, volume, and risk of different architectures. We present an overview of the Research and Applications trade-study analysis of algorithms, calibration and validation needs, and societal applications with specifics of substudies detailed in other articles in this special collection. We provide a value framework to converge from hundreds down to three candidate architectures recommended for development. The analysis identified valuable opportunities for international collaboration to increase the revisit frequency, adding value for all partners, leading to a clear measurement strategy for an observing system architecture.

20.
New Phytol ; 194(3): 775-783, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22404566

RESUMO

• It is well established that individual organisms can acclimate and adapt to temperature to optimize their functioning. However, thermal optimization of ecosystems, as an assemblage of organisms, has not been examined at broad spatial and temporal scales. • Here, we compiled data from 169 globally distributed sites of eddy covariance and quantified the temperature response functions of net ecosystem exchange (NEE), an ecosystem-level property, to determine whether NEE shows thermal optimality and to explore the underlying mechanisms. • We found that the temperature response of NEE followed a peak curve, with the optimum temperature (corresponding to the maximum magnitude of NEE) being positively correlated with annual mean temperature over years and across sites. Shifts of the optimum temperature of NEE were mostly a result of temperature acclimation of gross primary productivity (upward shift of optimum temperature) rather than changes in the temperature sensitivity of ecosystem respiration. • Ecosystem-level thermal optimality is a newly revealed ecosystem property, presumably reflecting associated evolutionary adaptation of organisms within ecosystems, and has the potential to significantly regulate ecosystem-climate change feedbacks. The thermal optimality of NEE has implications for understanding fundamental properties of ecosystems in changing environments and benchmarking global models.


Assuntos
Dióxido de Carbono/metabolismo , Ecossistema , Plantas/metabolismo , Temperatura , Aclimatação , Dióxido de Carbono/efeitos da radiação , Mudança Climática , Plantas/efeitos da radiação , Chuva , Energia Solar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA