Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 84(7): 1377-1391.e6, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38423013

RESUMO

Micronuclei (MN) are induced by various genotoxic stressors and amass nuclear- and cytoplasmic-resident proteins, priming the cell for MN-driven signaling cascades. Here, we measured the proteome of micronuclear, cytoplasmic, and nuclear fractions from human cells exposed to a panel of six genotoxins, comprehensively profiling their MN protein landscape. We find that MN assemble a proteome distinct from both surrounding cytoplasm and parental nuclei, depleted of spliceosome and DNA damage repair components while enriched for a subset of the replisome. We show that the depletion of splicing machinery within transcriptionally active MN contributes to intra-MN DNA damage, a known precursor to chromothripsis. The presence of transcription machinery in MN is stress-dependent, causing a contextual induction of MN DNA damage through spliceosome deficiency. This dataset represents a unique resource detailing the global proteome of MN, guiding mechanistic studies of MN generation and MN-associated outcomes of genotoxic stress.


Assuntos
Cromotripsia , Proteoma , Humanos , Proteoma/genética , Proteoma/metabolismo , Proteômica , Núcleo Celular/genética , Núcleo Celular/metabolismo , Dano ao DNA/genética
2.
Br J Haematol ; 204(4): 1146-1158, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38296617

RESUMO

Venetoclax, an oral BCL-2 inhibitor, has been widely incorporated in the treatment of acute myeloid leukaemia. The combination of hypomethylating agents and venetoclax is the current standard of care for elderly and patient's ineligible for aggressive therapies. However, venetoclax is being increasingly used with aggressive chemotherapy regimens both in the front line and in the relapse setting. Our growing experience and intensive research demonstrate that certain genetic abnormalities are associated with venetoclax sensitivity, while others with resistance, and that resistance can emerge during treatment leading to disease relapse. In the current review, we provide a summary of the known mechanisms of venetoclax cytotoxicity, both regarding the inhibition of BCL-2-mediated apoptosis and its effect on cell metabolism. We describe how these pathways are linked to venetoclax resistance and are associated with specific mutations. Finally, we provide the rationale for novel drug combinations in current and future clinical trials.


Assuntos
Leucemia Mieloide Aguda , Recidiva Local de Neoplasia , Sulfonamidas , Humanos , Idoso , Recidiva Local de Neoplasia/tratamento farmacológico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Recidiva , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia
3.
Haematologica ; 109(4): 1082-1094, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37941406

RESUMO

Oral azacitidine (oral-Aza) treatment results in longer median overall survival (OS) (24.7 vs. 14.8 months in placebo) in patients with acute myeloid leukemia (AML) in remission after intensive chemotherapy. The dosing schedule of oral-Aza (14 days/28-day cycle) allows for low exposure of Aza for an extended duration thereby facilitating a sustained therapeutic effect. However, the underlying mechanisms supporting the clinical impact of oral-Aza in maintenance therapy remain to be fully understood. In this preclinical work, we explore the mechanistic basis of oral-Aza/extended exposure to Aza through in vitro and in vivo modeling. In cell lines, extended exposure to Aza results in sustained DNMT1 loss, leading to durable hypomethylation, and gene expression changes. In mouse models, extended exposure to Aza, preferentially targets immature leukemic cells. In leukemic stem cell (LSC) models, the extended dose of Aza induces differentiation and depletes CD34+CD38- LSC. Mechanistically, LSC differentiation is driven in part by increased myeloperoxidase (MPO) expression. Inhibition of MPO activity either by using an MPO-specific inhibitor or blocking oxidative stress, a known mechanism of MPO, partly reverses the differentiation of LSC. Overall, our preclinical work reveals novel mechanistic insights into oral-Aza and its ability to target LSC.


Assuntos
Azacitidina , Leucemia Mieloide Aguda , Animais , Camundongos , Humanos , Azacitidina/farmacologia , Azacitidina/uso terapêutico , Antígenos CD34/metabolismo , Leucemia Mieloide Aguda/genética , Peroxidase , Células-Tronco/metabolismo
4.
J Immunol ; 208(12): 2702-2712, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35667842

RESUMO

CD8+ T cell proliferation and differentiation into effector and memory states are high-energy processes associated with changes in cellular metabolism. CD28-mediated costimulation of T cells activates the PI3K/AKT/mammalian target of rapamycin signaling pathway and induces eukaryotic translation initiation factor 4E-dependent translation through the derepression by 4E-BP1 and 4E-BP2. In this study, we demonstrate that 4E-BP1/2 proteins are required for optimum proliferation of mouse CD8+ T cells and the development of an antiviral effector function. We show that translation of genes encoding mitochondrial biogenesis is impaired in T cells derived from 4E-BP1/2-deficient mice. Our findings demonstrate an unanticipated role for 4E-BPs in regulating a metabolic program that is required for cell growth and biosynthesis during the early stages of CD8+ T cell expansion.


Assuntos
Fatores de Iniciação em Eucariotos , Fosfoproteínas , Animais , Linfócitos T CD8-Positivos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Mamíferos/genética , Camundongos , Biogênese de Organelas , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Biossíntese de Proteínas
5.
Pharmacol Rev ; 73(1): 1-58, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33177128

RESUMO

Post-translational modifications of cellular substrates with ubiquitin and ubiquitin-like proteins (UBLs), including ubiquitin, SUMOs, and neural precursor cell-expressed developmentally downregulated protein 8, play a central role in regulating many aspects of cell biology. The UBL conjugation cascade is initiated by a family of ATP-dependent enzymes termed E1 activating enzymes and executed by the downstream E2-conjugating enzymes and E3 ligases. Despite their druggability and their key position at the apex of the cascade, pharmacologic modulation of E1s with potent and selective drugs has remained elusive until 2009. Among the eight E1 enzymes identified so far, those initiating ubiquitylation (UBA1), SUMOylation (SAE), and neddylation (NAE) are the most characterized and are implicated in various aspects of cancer biology. To date, over 40 inhibitors have been reported to target UBA1, SAE, and NAE, including the NAE inhibitor pevonedistat, evaluated in more than 30 clinical trials. In this Review, we discuss E1 enzymes, the rationale for their therapeutic targeting in cancer, and their different inhibitors, with emphasis on the pharmacologic properties of adenosine sulfamates and their unique mechanism of action, termed substrate-assisted inhibition. Moreover, we highlight other less-characterized E1s-UBA6, UBA7, UBA4, UBA5, and autophagy-related protein 7-and the opportunities for targeting these enzymes in cancer. SIGNIFICANCE STATEMENT: The clinical successes of proteasome inhibitors in cancer therapy and the emerging resistance to these agents have prompted the exploration of other signaling nodes in the ubiquitin-proteasome system including E1 enzymes. Therefore, it is crucial to understand the biology of different E1 enzymes, their roles in cancer, and how to translate this knowledge into novel therapeutic strategies with potential implications in cancer treatment.


Assuntos
Neoplasias , Enzimas Ativadoras de Ubiquitina , Humanos , Neoplasias/tratamento farmacológico , Processamento de Proteína Pós-Traducional , Ubiquitina/metabolismo , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/metabolismo , Ubiquitinação , Ubiquitinas/metabolismo
6.
Br J Haematol ; 201(4): 645-652, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36794878

RESUMO

Venous thromboembolism (VTE) is a well-known complication in patients with acute lymphoblastic leukaemia (ALL) receiving asparaginase (ASP)-based chemotherapy, including the ASP-intensive Dana-Farber Cancer Institute (DFCI) 91-01 protocol for adults. Since 2019, native L-ASP is no longer available in Canada and was replaced by pegylated (PEG)-ASP. To determine whether the incidence of VTE has changed since switching from L-ASP to PEG-ASP, we conducted a single-centred retrospective cohort study. We included 245 adult patients with Philadelphia chromosome negative ALL between 2011 and 2021, with 175 from the L-ASP group (2011-2019) and 70 from the PEG-ASP group (2018-2021). During Induction, 10.29% (18/175) of patients who received L-ASP developed VTE, whereas 28.57% (20/70) of patients who received PEG-ASP developed VTE (p = 0.0035; odds ratio [OR] 3.35, 95% confidence interval [CI] 1.51-7.39), after adjusting for line type, gender, history of VTE, platelets at diagnosis. Similarly, during Intensification, 13.64% (18/132) of patients had VTE on L-ASP while 34.37% (11/32) of patients on PEG-ASP developed VTE (p = 0.0096; OR 3.96, 95% CI 1.57-9.96 with multivariable analysis). We found that PEG-ASP is associated with a higher incidence of VTE compared to L-ASP, both during Induction and Intensification, despite the administration of prophylactic anticoagulation. Further VTE mitigation strategies are needed in particular for adult patients with ALL receiving PEG-ASP.


Assuntos
Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Tromboembolia Venosa , Humanos , Adulto , Asparaginase/efeitos adversos , Estudos Retrospectivos , Tromboembolia Venosa/induzido quimicamente , Tromboembolia Venosa/epidemiologia , Tromboembolia Venosa/complicações , Incidência , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Polietilenoglicóis/efeitos adversos , Antineoplásicos/uso terapêutico
7.
Blood ; 138(3): 234-245, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34292323

RESUMO

Venetoclax, a Bcl-2 inhibitor, in combination with the hypomethylating agent azacytidine, achieves complete remission with or without count recovery in ∼70% of treatment-naive elderly patients unfit for conventional intensive chemotherapy. However, the mechanism of action of this drug combination is not fully understood. We discovered that venetoclax directly activated T cells to increase their cytotoxicity against acute myeloid leukemia (AML) in vitro and in vivo. Venetoclax enhanced T-cell effector function by increasing reactive oxygen species generation through inhibition of respiratory chain supercomplexes formation. In addition, azacytidine induced a viral mimicry response in AML cells by activating the STING/cGAS pathway, thereby rendering the AML cells more susceptible to T cell-mediated cytotoxicity. Similar findings were seen in patients treated with venetoclax, as this treatment increased reactive oxygen species generation and activated T cells. Collectively, this study presents a new immune-mediated mechanism of action for venetoclax and azacytidine in the treatment of AML and highlights a potential combination of venetoclax and adoptive cell therapy for patients with AML.


Assuntos
Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Sulfonamidas/farmacologia , Linfócitos T/efeitos dos fármacos , Adulto , Antineoplásicos/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Células Cultivadas , Humanos , Imunidade Celular/efeitos dos fármacos , Leucemia Mieloide Aguda/imunologia , Espécies Reativas de Oxigênio/imunologia , Sulfonamidas/uso terapêutico , Linfócitos T/imunologia , Células Tumorais Cultivadas
8.
Blood ; 137(25): 3518-3532, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33720355

RESUMO

Acute myeloid leukemia (AML) cells have an atypical metabolic phenotype characterized by increased mitochondrial mass, as well as a greater reliance on oxidative phosphorylation and fatty acid oxidation (FAO) for survival. To exploit this altered metabolism, we assessed publicly available databases to identify FAO enzyme overexpression. Very long chain acyl-CoA dehydrogenase (VLCAD; ACADVL) was found to be overexpressed and critical to leukemia cell mitochondrial metabolism. Genetic attenuation or pharmacological inhibition of VLCAD hindered mitochondrial respiration and FAO contribution to the tricarboxylic acid cycle, resulting in decreased viability, proliferation, clonogenic growth, and AML cell engraftment. Suppression of FAO at VLCAD triggered an increase in pyruvate dehydrogenase activity that was insufficient to increase glycolysis but resulted in adenosine triphosphate depletion and AML cell death, with no effect on normal hematopoietic cells. Together, these results demonstrate the importance of VLCAD in AML cell biology and highlight a novel metabolic vulnerability for this devastating disease.


Assuntos
Ácidos Graxos/metabolismo , Leucemia Mieloide Aguda/metabolismo , Acil-CoA Desidrogenase de Cadeia Longa/genética , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico , Ácidos Graxos/genética , Glicólise , Humanos , Cetona Oxirredutases/metabolismo , Leucemia Mieloide Aguda/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
9.
Blood ; 136(1): 81-92, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32299104

RESUMO

Through a clustered regularly insterspaced short palindromic repeats (CRISPR) screen to identify mitochondrial genes necessary for the growth of acute myeloid leukemia (AML) cells, we identified the mitochondrial outer membrane protein mitochondrial carrier homolog 2 (MTCH2). In AML, knockdown of MTCH2 decreased growth, reduced engraftment potential of stem cells, and induced differentiation. Inhibiting MTCH2 in AML cells increased nuclear pyruvate and pyruvate dehydrogenase (PDH), which induced histone acetylation and subsequently promoted the differentiation of AML cells. Thus, we have defined a new mechanism by which mitochondria and metabolism regulate AML stem cells and gene expression.


Assuntos
Leucemia Mieloide Aguda/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Proteínas de Neoplasias/fisiologia , Acetilação , Animais , Sistemas CRISPR-Cas , Diferenciação Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Sangue Fetal/citologia , Regulação Leucêmica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Histonas/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína de Leucina Linfoide-Mieloide/fisiologia , Proteínas de Fusão Oncogênica/fisiologia , Processamento de Proteína Pós-Traducional , Ácido Pirúvico/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia
10.
Nature ; 540(7633): 433-437, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27926740

RESUMO

Refractoriness to induction chemotherapy and relapse after achievement of remission are the main obstacles to cure in acute myeloid leukaemia (AML). After standard induction chemotherapy, patients are assigned to different post-remission strategies on the basis of cytogenetic and molecular abnormalities that broadly define adverse, intermediate and favourable risk categories. However, some patients do not respond to induction therapy and another subset will eventually relapse despite the lack of adverse risk factors. There is an urgent need for better biomarkers to identify these high-risk patients before starting induction chemotherapy, to enable testing of alternative induction strategies in clinical trials. The high rate of relapse in AML has been attributed to the persistence of leukaemia stem cells (LSCs), which possess a number of stem cell properties, including quiescence, that are linked to therapy resistance. Here, to develop predictive and/or prognostic biomarkers related to stemness, we generated a list of genes that are differentially expressed between 138 LSC+ and 89 LSC- cell fractions from 78 AML patients validated by xenotransplantation. To extract the core transcriptional components of stemness relevant to clinical outcomes, we performed sparse regression analysis of LSC gene expression against survival in a large training cohort, generating a 17-gene LSC score (LSC17). The LSC17 score was highly prognostic in five independent cohorts comprising patients of diverse AML subtypes (n = 908) and contributed greatly to accurate prediction of initial therapy resistance. Patients with high LSC17 scores had poor outcomes with current treatments including allogeneic stem cell transplantation. The LSC17 score provides clinicians with a rapid and powerful tool to identify AML patients who do not benefit from standard therapy and who should be enrolled in trials evaluating novel upfront or post-remission strategies.


Assuntos
Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Algoritmos , Animais , Estudos de Coortes , Feminino , Regulação Leucêmica da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Prognóstico , Medição de Risco , Transplante de Células-Tronco , Análise de Sobrevida , Transcriptoma , Transplante Homólogo , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Haematologica ; 106(1): 56-63, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31896684

RESUMO

Core-binding factor acute myeloid leukemia is characterized by t(8;21) or inv(16) and the fusion proteins RUNX1-RUNX1T1 and CBFB-MYH11. International guidelines recommend monitoring for measurable residual disease every 3 months for 2 years after treatment. However, it is unknown if serial molecular monitoring can predict and prevent morphologic relapse. We conducted a retrospective single-center study of 114 patients in complete remission who underwent molecular monitoring with RT-qPCR of RUNX1-RUNX1T1 or CBFB-MYH11 transcripts every 3 months. Morphologic relapse was defined as re-emergence of >5% blasts and molecular relapse as ≥1 log increase in transcript level between 2 samples. Over a median follow-up time of 3.7 years (range 0.2-14.3), remission persisted in 71 (62.3%) patients but 43 (37.7%) developed molecular or morphologic relapse. Patients who achieved <3 log reduction in RUNX1-RUNX1T1 or CBFB-MYH11 transcripts at end of chemotherapy had a significantly higher risk of relapse compared to patients who achieved ≥3 log reduction (61.1% vs. 33.7%, p=0.004). The majority of relapses (74.4%, n=32) were not predicted by molecular monitoring and occurred rapidly with <100 days from molecular to morphologic relapse. Molecular monitoring enabled the detection of impending relapse and permitted pre-emptive intervention prior to morphologic relapse in only 11 (25.6%) patients. The current practice of molecular monitoring every 3 months provided insufficient lead-time to identify molecular relapses and prevent morphologic relapse in the majority of patients with core-binding factor acute myeloid leukemia treated at our institution. Further research is necessary to determine the optimal monitoring strategies for these patients.


Assuntos
Leucemia Mieloide Aguda , Progressão da Doença , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Neoplasia Residual/genética , Proteínas de Fusão Oncogênica/genética , Recidiva , Estudos Retrospectivos
13.
Nature ; 506(7488): 328-33, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24522528

RESUMO

In acute myeloid leukaemia (AML), the cell of origin, nature and biological consequences of initiating lesions, and order of subsequent mutations remain poorly understood, as AML is typically diagnosed without observation of a pre-leukaemic phase. Here, highly purified haematopoietic stem cells (HSCs), progenitor and mature cell fractions from the blood of AML patients were found to contain recurrent DNMT3A mutations (DNMT3A(mut)) at high allele frequency, but without coincident NPM1 mutations (NPM1c) present in AML blasts. DNMT3A(mut)-bearing HSCs showed a multilineage repopulation advantage over non-mutated HSCs in xenografts, establishing their identity as pre-leukaemic HSCs. Pre-leukaemic HSCs were found in remission samples, indicating that they survive chemotherapy. Therefore DNMT3A(mut) arises early in AML evolution, probably in HSCs, leading to a clonally expanded pool of pre-leukaemic HSCs from which AML evolves. Our findings provide a paradigm for the detection and treatment of pre-leukaemic clones before the acquisition of additional genetic lesions engenders greater therapeutic resistance.


Assuntos
Células-Tronco Hematopoéticas/citologia , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/citologia , Animais , Diferenciação Celular , Divisão Celular , Linhagem da Célula , Células Clonais/citologia , Células Clonais/metabolismo , Células Clonais/patologia , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Hematopoese , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Xenoenxertos , Humanos , Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação/genética , Transplante de Neoplasias , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Nucleares/genética , Nucleofosmina , Indução de Remissão , Linfócitos T/metabolismo , Linfócitos T/patologia
14.
Blood ; 129(19): 2657-2666, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28283480

RESUMO

Mitochondrial DNA (mtDNA) biosynthesis requires replication factors and adequate nucleotide pools from the mitochondria and cytoplasm. We performed gene expression profiling analysis of 542 human acute myeloid leukemia (AML) samples and identified 55% with upregulated mtDNA biosynthesis pathway expression compared with normal hematopoietic cells. Genes that support mitochondrial nucleotide pools, including mitochondrial nucleotide transporters and a subset of cytoplasmic nucleoside kinases, were also increased in AML compared with normal hematopoietic samples. Knockdown of cytoplasmic nucleoside kinases reduced mtDNA levels in AML cells, demonstrating their contribution in maintaining mtDNA. To assess cytoplasmic nucleoside kinase pathway activity, we used a nucleoside analog 2'3'-dideoxycytidine (ddC), which is phosphorylated to the activated antimetabolite, 2'3'-dideoxycytidine triphosphate by cytoplasmic nucleoside kinases. ddC is a selective inhibitor of the mitochondrial DNA polymerase γ. ddC was preferentially activated in AML cells compared with normal hematopoietic progenitor cells. ddC treatment inhibited mtDNA replication, oxidative phosphorylation, and induced cytotoxicity in a panel of AML cell lines. Furthermore, ddC preferentially inhibited mtDNA replication in a subset of primary human leukemia cells and selectively targeted leukemia cells while sparing normal progenitor cells. In animal models of human AML, treatment with ddC decreased mtDNA, electron transport chain proteins, and induced tumor regression without toxicity. ddC also targeted leukemic stem cells in secondary AML xenotransplantation assays. Thus, AML cells have increased cytidine nucleoside kinase activity that regulates mtDNA biogenesis and can be leveraged to selectively target oxidative phosphorylation in AML.


Assuntos
DNA Mitocondrial/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Fosforilação Oxidativa , Fosfotransferases/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Replicação do DNA , Humanos , Camundongos SCID , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Núcleosídeo-Fosfato Quinase/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas , Zalcitabina/metabolismo
15.
Haematologica ; 104(5): 963-972, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30573504

RESUMO

Mitochondrial DNA encodes 13 proteins that comprise components of the respiratory chain that maintain oxidative phosphorylation. The replication of mitochondrial DNA is performed by the sole mitochondrial DNA polymerase γ. As acute myeloid leukemia (AML) cells and stem cells have an increased reliance on oxidative phosphorylation, we sought to evaluate polymerase γ inhibitors in AML. The thymidine dideoxynucleoside analog, alovudine, is an inhibitor of polymerase γ. In AML cells, alovudine depleted mitochondrial DNA, reduced mitochondrial encoded proteins, decreased basal oxygen consumption, and decreased cell proliferation and viability. To evaluate the effects of polymerase γ inhibition with alovudine in vivo, mice were xenografted with OCI-AML2 cells and then treated with alovudine. Systemic administration of alovudine reduced leukemic growth without evidence of toxicity and decreased levels of mitochondrial DNA in the leukemic cells. We also showed that alovudine increased the monocytic differentiation of AML cells. Genetic knockdown and other chemical inhibitors of polymerase γ also promoted AML differentiation, but the effects on AML differentiation were independent of reductions in oxidative phosphorylation or respiratory chain proteins. Thus, we have identified a novel mechanism by which mitochondria regulate AML fate and differentiation independent of oxidative phosphorylation. Moreover, we highlight polymerase γ inhibitors, such as alovudine, as novel therapeutic agents for AML.


Assuntos
Diferenciação Celular/efeitos dos fármacos , DNA Polimerase gama/antagonistas & inibidores , Didesoxinucleosídeos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Mitocôndrias/patologia , Monócitos/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Animais , Antivirais/farmacologia , Apoptose , Proliferação de Células , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Timidina/química , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Support Care Cancer ; 27(8): 2789-2797, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30535882

RESUMO

PURPOSE: Acute leukemia (AL) is associated with substantial morbidity and mortality. We assessed the prevalence and correlates of pain in patients with newly diagnosed or relapsed AL. METHODS: Patients with newly diagnosed or relapsed AL admitted to a comprehensive cancer center completed the Memorial Symptom Assessment Scale (MSAS), which assesses prevalence, severity, and distress associated with pain and other symptoms. Factors associated with severe pain were assessed using logistic regression. Two raters completed chart reviews in duplicate for patients with severe pain (MSAS severity ≥ 3/4) to determine the site of pain. RESULTS: Three hundred eighteen patients were recruited from January 2008 to October 2013: 245 (77.0%) had acute myeloid or acute promyelocytic leukemia (AML/APL) and 73 (23.0%) had acute lymphoblastic leukemia (ALL); 289 (90.9%) were newly diagnosed and 29 (9.1%) had relapsed disease. Pain was reported in 156/318 (49.2%), of whom 55/156 (35.3%) reported severe pain (≥ 3/4). Pain was associated with all psychological symptoms (all p < 0.005) and some physical symptoms. Severe pain was associated with younger age (p = 0.02), worse performance status (p = 0.04), ALL diagnosis (p = 0.04), and time from onset of chemotherapy (p = 0.03), with pain peaking at 4 weeks after chemotherapy initiation. The most common sites of severe pain were oropharynx (22; 40%), head (12; 21.8%), and abdomen (11; 20%). Only 3 patients (0.9%) were referred to the symptom control/palliative care team during the month prior to or following assessment. CONCLUSIONS: Pain is frequent, distressing, and predictable in patients undergoing induction chemotherapy for AL. Further research is needed to assess the efficacy of early supportive care in this population.


Assuntos
Dor do Câncer/diagnóstico , Dor do Câncer/epidemiologia , Leucemia/complicações , Leucemia/epidemiologia , Dor/diagnóstico , Doença Aguda , Adolescente , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Dor do Câncer/etiologia , Feminino , Humanos , Leucemia/diagnóstico , Leucemia Mieloide Aguda/complicações , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/epidemiologia , Leucemia Mieloide Aguda/patologia , Masculino , Pessoa de Meia-Idade , Dor/epidemiologia , Dor/etiologia , Medição da Dor , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicações , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/epidemiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Prevalência , Recidiva , Adulto Jovem
17.
Support Care Cancer ; 27(6): 2295-2300, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30341536

RESUMO

Despite the widespread use of 5-HT3 antagonists as anti-emetic prophylaxis in patients with acute myeloid leukemia (AML) receiving induction chemotherapy, nausea and vomiting persist in many cases. We performed a Phase II single-arm study evaluating the use of aprepitant on days 1-5, in combination with a 5-HT antagonist on days 1-3, in AML patients undergoing induction chemotherapy with daunorubicin on days 1-3 plus cytarabine, given as a continuous infusion, on days 1-7. This was compared to a retrospective cohort of AML patients that received the same chemotherapy regimen with a 5-HT antagonist but without aprepitant. The cumulative incidence of vomiting/retching by the end of day 5 was significantly lower in the aprepitant vs. the control group (26.3 vs. 52.8%, p = 0.013). The cumulative incidence of nausea by the end of day 5 was 61% in the aprepitant group vs. 75% in the control group. The total use of supplemental anti-emetics on days 2-5 was also significantly lower in the aprepitant group (p = 0.01). In contrast, the cumulative incidence of vomiting/retching by the end of day 8, the incidence of vomiting/retching on days 6-8, and the use of anti-emetics on days 6-8, were not significantly different between the two groups. The results suggest that the use of aprepitant may be associated with a lower rate of emesis during aprepitant dosing days, but not afterward. However, this requires confirmation in a randomized trial.


Assuntos
Antieméticos/uso terapêutico , Aprepitanto/uso terapêutico , Quimioterapia de Indução/métodos , Leucemia Mieloide Aguda/tratamento farmacológico , Idoso , Antieméticos/farmacologia , Aprepitanto/farmacologia , Feminino , Humanos , Leucemia Mieloide Aguda/patologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos Retrospectivos
18.
Blood ; 127(13): 1676-86, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-26825710

RESUMO

The transcription factor c-Maf is extensively involved in the pathophysiology of multiple myeloma (MM), a fatal malignancy of plasma cells. In the present study, affinity chromatography and mass spectrometry were used to identify c-Maf ubiquitination-associated proteins, from which the E3 ligase HERC4 was found to interact with c-Maf and catalyzed its polyubiquitination and subsequent proteasome-mediated degradation. HERC4 mediated polyubiquitination at K85 and K297 in c-Maf, and this polyubiquitination could be prevented by the isopeptidase USP5. Further analysis on the NCI-60 cell line collection revealed that RPMI 8226, a MM-derived cell line, expressed the lowest level of HERC4. Primary bone marrow analysis revealed HERC4 expression was high in normal bone marrow, but was steadily decreased during myelomagenesis. These findings suggested HERC4 played an important role in MM progression. Moreover, ectopic HERC4 expression decreased MM proliferation in vitro, and delayed xenograft tumor growth in vivo. Therefore, modulation of c-Maf ubiquitination by targeting HERC4 may represent a new therapeutic modality for MM.


Assuntos
Proliferação de Células , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Proteínas Proto-Oncogênicas c-maf/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação , Animais , Células Cultivadas , Células HEK293 , Células HeLa , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Camundongos SCID , Células NIH 3T3 , Transplante de Neoplasias , Ubiquitina/metabolismo
19.
Blood ; 125(13): 2120-30, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25631767

RESUMO

Mitochondrial respiration is a crucial component of cellular metabolism that can become dysregulated in cancer. Compared with normal hematopoietic cells, acute myeloid leukemia (AML) cells and patient samples have higher mitochondrial mass, without a concomitant increase in respiratory chain complex activity. Hence these cells have a lower spare reserve capacity in the respiratory chain and are more susceptible to oxidative stress. We therefore tested the effects of increasing the electron flux through the respiratory chain as a strategy to induce oxidative stress and cell death preferentially in AML cells. Treatment with the fatty acid palmitate induced oxidative stress and cell death in AML cells, and it suppressed tumor burden in leukemic cell lines and primary patient sample xenografts in the absence of overt toxicity to normal cells and organs. These data highlight a unique metabolic vulnerability in AML, and identify a new therapeutic strategy that targets abnormal oxidative metabolism in this malignancy.


Assuntos
Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Estresse Oxidativo/fisiologia , Consumo de Oxigênio , Morte Celular , Respiração Celular , Transporte de Elétrons , Humanos , Tamanho Mitocondrial , Consumo de Oxigênio/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA