Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 13(7): 5209-14, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23901554

RESUMO

Organic solar cells are a favorable alternative to their inorganic counterparts because the functional layers of these devices can be processed with printing or coating on a large scale. In this study, a novel polymer was synthesized, blended with fullerene and deposited with inkjet printing for solar cell applications. Devices with printed layers were compared to those with spin coated films in order to evaluate inkjet printing as a thin film deposition method. Efficiency values of 3.7% were found for devices with inkjet printed or spin coated layers. Inkjet printing can be used to successfully process the active layers of organic solar cells consisting of novel polymers without sacrificing device performance.


Assuntos
Fontes de Energia Elétrica , Nanoestruturas/química , Compostos Orgânicos/química , Polímeros/química , Energia Solar , Óxido de Zinco/química , Periféricos de Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Nanoestruturas/efeitos da radiação , Nanoestruturas/ultraestrutura , Compostos Orgânicos/efeitos da radiação , Oxirredução , Óxido de Zinco/efeitos da radiação
2.
J Am Chem Soc ; 134(36): 14932-44, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22861119

RESUMO

A novel fluorinated copolymer (F-PCPDTBT) is introduced and shown to exhibit significantly higher power conversion efficiency in bulk heterojunction solar cells with PC(70)BM compared to the well-known low-band-gap polymer PCPDTBT. Fluorination lowers the polymer HOMO level, resulting in high open-circuit voltages well exceeding 0.7 V. Optical spectroscopy and morphological studies with energy-resolved transmission electron microscopy reveal that the fluorinated polymer aggregates more strongly in pristine and blended layers, with a smaller amount of additives needed to achieve optimum device performance. Time-delayed collection field and charge extraction by linearly increasing voltage are used to gain insight into the effect of fluorination on the field dependence of free charge-carrier generation and recombination. F-PCPDTBT is shown to exhibit a significantly weaker field dependence of free charge-carrier generation combined with an overall larger amount of free charges, meaning that geminate recombination is greatly reduced. Additionally, a 3-fold reduction in non-geminate recombination is measured compared to optimized PCPDTBT blends. As a consequence of reduced non-geminate recombination, the performance of optimized blends of fluorinated PCPDTBT with PC(70)BM is largely determined by the field dependence of free-carrier generation, and this field dependence is considerably weaker compared to that of blends comprising the non-fluorinated polymer. For these optimized blends, a short-circuit current of 14 mA/cm(2), an open-circuit voltage of 0.74 V, and a fill factor of 58% are achieved, giving a highest energy conversion efficiency of 6.16%. The superior device performance and the low band-gap render this new polymer highly promising for the construction of efficient polymer-based tandem solar cells.

3.
J Phys Chem Lett ; 3(5): 640-5, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26286160

RESUMO

We have applied time-delayed collection field (TDCF) and charge extraction by linearly increasing voltage (CELIV) to investigate the photogeneration, transport, and recombination of charge carriers in blends composed of PCPDTBT/PC70BM processed with and without the solvent additive diiodooctane. The results suggest that the solvent additive has severe impacts on the elementary processes involved in the photon to collected electron conversion in these blends. First, a pronounced field dependence of the free carrier generation is found for both blends, where the field dependence is stronger without the additive. Second, the fate of charge carriers in both blends can be described with a rather high bimolecular recombination coefficients, which increase with decreasing internal field. Third, the mobility is three to four times higher with the additive. Both blends show a negative field dependence of mobility, which we suggest to cause bias-dependent recombination coefficients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA