Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Gels ; 10(2)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38391450

RESUMO

Aerogels prepared using freeze-drying methods have the potential to be insulation materials or absorbents in the fields of industry, architecture, agriculture, etc., for their low heat conductivity, high specific area, low density, degradability, and low cost. However, their native, poor water resistance caused by the hydrophilicity of their polymer matrix limits their practical application. In this work, a novel, controllable, and efficient templating method was utilized to construct a highly hydrophobic surface for freeze-drying aerogels. The influence of templates on the macroscopic morphology and hydrophobic properties of materials was investigated in detail. This method provided the economical and rapid preparation of a water-resistant aerogel made from polyvinyl alcohol (PVA) and montmorillonite (MMT), putting forward a new direction for the research and development of new, environmentally friendly materials.

2.
Langmuir ; 28(8): 4009-15, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22309118

RESUMO

Graphene production in water from graphite sources is an important technological route toward harvesting the unique properties of this material. Graphene forms thermodynamically unstable dispersions in water, limiting the use of this solvent due to aggregation. We show that graphene-water dispersions can be controlled kinetically to produce graphene by using laponite clay. Laponite exhibits rapid gelation kinetics when dispersed in water above its gelation concentration, allowing graphene aggregation to be halted after exfoliation in water at ambient conditions. The transparency of laponite colloidal glass and films is important in examining the extent of graphene exfoliation.

3.
Gels ; 7(2)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066884

RESUMO

Sodium hydroxide was used as a base catalyst to reduce the flammability of poly(vinyl alcohol) (PVA) aerogels. The base-modified aerogels exhibited significantly enhanced compressive moduli, likely resulting in decreased gallery spacing and increased numbers of "struts" in their structures. The onset of decomposition temperature decreased for the PVA aerogels in the presence of the base, which appears to hinder the polymer pyrolysis process, leading instead to the facile formation of dense char. Cone calorimetry testing showed a dramatic decrease in heat release when the base was added. The results indicate that an unexpected base-catalyzed dehydration occurs at fire temperatures, which is the opposite of the chemistry normally observed under typical synthesis conditions.

4.
Langmuir ; 26(14): 12198-202, 2010 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-20578752

RESUMO

The effects of electrolyte and polymer loadings on formation, density, and mechanical properties of clay aerogels have been investigated. Coherent aerogels were formed at all tested concentrations except at a combination of low electrolyte (<0.04 M) and polymer (<1% w/v) concentrations because of partial clay flocculation. The compressive modulus and yield strength of the aerogels containing poly(vinyl alcohol) are sensitive to electrolyte loading at low polymer concentration but are otherwise insensitive. Mechanical properties show power law dependence on aerogel density, which depends mainly on polymer loading. The power law exponent for the compressive modulus is 3.74 when the relative density is used in the model and 5.7 when the measured bulk density is used instead. These high exponent values are attributed to the layered microstructure of these aerogels.

5.
Biomacromolecules ; 11(10): 2640-6, 2010 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-20806909

RESUMO

Biodegradable foamlike materials based on a naturally occurring polymer (casein protein) and sodium montmorillonite clay (Na+ -MMT) were produced through a simple freeze-drying process. By utilizing DL-glyceraldehyde (GC) as a chemical cross-linking agent, the structural integrity of these new aerogels were remarkably improved when compared to those of the control system (without GC), with a minimal increase in the density from 0.11 to 0.12 g cm⁻³. The degree of perfection of the foamlike structures was another parameter that had a significant influence on the physical and thermal performances of the low density composites. The biodegradability of the aerogels was investigated in terms of the carbon dioxide (CO2) evolution for up to 8 weeks in compost media under controlled conditions.


Assuntos
Silicatos de Alumínio/química , Bentonita/química , Caseínas/química , Plásticos/síntese química , Biodegradação Ambiental , Argila , Reagentes de Ligações Cruzadas/química , Liofilização , Gliceraldeído/química , Reação de Maillard , Teste de Materiais , Fenômenos Mecânicos , Microscopia Eletrônica de Varredura , Plásticos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Temperatura
6.
Polymers (Basel) ; 12(4)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272648

RESUMO

Biological molecules can be obtained from natural sources or from commercial waste streams and can serve as effective feedstocks for a wide range of polymer products. From foams to epoxies and composites to bulk plastics, biomolecules show processability, thermal stability, and mechanical adaptations to fulfill current material requirements. This paper summarizes the known bio-sourced (or bio-derived), environmentally safe, thermo-oxidative, and flame retardant (BEST-FR) additives from animal tissues, plant fibers, food waste, and other natural resources. The flammability, flame retardance, and-where available-effects on polymer matrix's mechanical properties of these materials will be presented. Their method of incorporation into the matrix, and the matrices for which the BEST-FR should be applicable will also be made known if reported. Lastly, a review on terminology and testing methodology is provided with comments on future developments in the field.

7.
Macromol Rapid Commun ; 30(19): 1669-73, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21638436

RESUMO

Aerogels are low density (<0.1 g · cm(-3) ), highly porous materials that are especially interesting for insulating applications. Combinations of clay and water-soluble polymers are commonly used to produce aerogels, but these materials are often mechanically weak. Single-walled carbon nanotubes (SWNT) were combined with clay and found to significantly improve mechanical behavior and impart electrical conductivity to these aerogels. Poly(acrylic acid) (PAA) as the matrix polymer provides a means of tailoring the electrical conductivity and mechanical behavior by altering the pH of the aqueous aerogel precursor suspensions prior to freeze drying. An aerogel, made from a pH 9 aqueous suspension containing 0.5 wt.-% PAA, 5 wt.-% clay, and 0.05 wt.-% SWNT, has a compressive modulus of 373 kPa. In the absence of nanotubes, this modulus is reduced to 43 kPa. Reducing suspension pH to 3, prior to freeze drying, also reduces modulus for these aerogels, but electrical conductivity is increased when nanotubes are present. It was found that bundled nanotubes provide better reinforcement for these low-density composites, which may provide some new insight into the use of nanotubes in materials that will be exposed to compressive loading.

8.
Polymers (Basel) ; 10(10)2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30961027

RESUMO

Poly(vinyl alcohol) (PVA), tannic acid (TA) and sodium hydroxide (NaOH) were used to prepare low-flammability, mechanically-strong aerogels via an environmentally-friendly freeze-drying method. Because of the strong interaction between TA and PVA through hydrogen bonds, PVA/TA/NaOH aerogels exhibited compressive moduli as high as 12.7 MPa, 20 times that of the control PVA aerogel. The microstructure of the aerogels in this study showed that the addition of NaOH disrupted the typical "card of house" aerogel structure, while the samples with TA showed a stereoscopic uniform structure. The thermal stabilities of aerogels were tested by thermogravimetric analysis, showing both a decrease on the onset of decomposition temperature, and a reduction in decomposition rate after initial char formation. The peak heat release rate and total heat release, as measured by cone calorimetry, dropped by 69% and 54%, respectively, after adding TA and NaOH.

9.
Gels ; 4(2)2018 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30674809

RESUMO

A series of low density, highly porous clay/poly(vinyl alcohol) composite aerogels, incorporating ammonium alginate, were fabricated via a convenient and eco-friendly freeze drying method. It is significant to understand rheological properties of precursor gels because they directly affect the form of aerogels and their processing behaviors. The introduction of ammonium alginate impacted the rheological properties of colloidal gels and improved the mechanical performance of the subject aerogels. The specific compositions and processing conditions applied to those colloidal gel systems brought about different aerogel morphologies, which in turn translated into the observed mechanical properties. The bridge between gel rheologies and aerogel structures are established in the present work.

10.
Materials (Basel) ; 11(2)2018 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-29401663

RESUMO

Low density composites of sodium montmorillonite and poly(amide-imide) polymers have been created using an ice templating method, which serves as an alternative to the often-difficult foaming of high temperature/high performance polymers. The starting polymer was received in the poly(amic acid) form which can be cured using heat, into a water insoluble amide-imide copolymer. The resulting materials have densities in the 0.05 g/cm³ range and have excellent mechanical properties. Using a tertiary amine as a processing aid provides for lower viscosity and allows more concentrated polymer solutions to be used. The concentration of the amine relative to the acid groups on the polymer backbone has been found to cause significant difference in the mechanical properties of the dried materials. The synthesis and characterization of low density versions of two poly(amide-imide) polymers and their composites with sodium montmorillonite clay are discussed in the present work.

11.
Gels ; 4(1)2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-30674784

RESUMO

Dispersion of graphite in water was achieved using clay as dispersing aid. In the absence of polymer, the clay/graphite suspensions were sufficiently stable to produce aerogels composed of very thin layers of uniformly dispersed nanoparticles. Poly(vinyl alcohol) (PVOH) aerogels containing binary nanofillers (clay plus graphite) were then fabricated and tested. These composites were found to maintain low thermal and electrical conductivities even with high loading of graphite. A unique compressive stress-strain behavior was observed for the aerogel, exhibiting a plateau in the densification region, likely due to sliding between clay and graphite layers within the PVOH matrix. The aerogels containing only graphite exhibited higher compressive modulus, yield stress and toughness values than the samples filled with binary nanofillers. X-ray diffraction (XRD) spectra for the same composite aerogel before and after compression testing illustrated the compression-induced dispersion changes of nanofillers. Composites containing 50 wt % graphite demonstrated a downshift of its 2D Raman peak implying graphite exfoliation to graphene with less than 5 layers.

12.
J Clin Exp Dent ; 9(7): e875-e878, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28828153

RESUMO

BACKGROUND: Bio cellulose is a byproduct of sweet tea fermentation known as kombusha. During the biosynthesis by bacteria cellulose chains are polymerized by enzyme from activated glucose. The single chains are then extruded through the bacterial cell wall. Interestingly, a potential of the Kombucha's byproduct bio cellulose (BC) as biomaterial had come into focus only in the past few decades. The unique physical and mechanical properties such as high purity, an ultrafine and highly crystalline network structure, a superior mechanical strength, flexibility, pronounced permeability to gases and liquids, and an excellent compatibility with living tissue that reinforced by biodegradability, biocompatibility, large swelling ratios. MATERIAL AND METHODS: The bio-cellulose film specimens were provided by the R.P Dressel dental materials laboratory, Department of Comprehensive Care, School of Dental Medicine, Case Western Reserve University, Cleveland, US. The films were harvested, washed with water and dried at room temperature overnight. 1wt% of PEG-2000 and 10wt% of NaOH were added into ultrapure water to prepare PEG/NaOH solution. Then bio-cellulose film was added to the mixture and swell for 3 h at room temperature. All bio-cellulose film specimens were all used in the TA Instruments Q500 Thermogravmetric Analyzer to investigate weight percent lost and degradation. The TGA was under ambient air conditions at a heating rate of 10ºC/min. RESULTS AND CONCLUSIONS: PEG control exhibited one transition with the peak at 380ºC. Cellulose and cellulose/ PEG films showed 3 major transitions. Interestingly, the cellulose/PEG film showed slightly elevated temperatures when compared to the corresponding transitions for cellulose control. The thermal gravimetric analysis (TGA) degradation curves were analyzed. Cellulose control film exhibited two zero order transitions, that indicate the independence of the rate of degradation from the amount on the initial substance. The activation energies for three transitions for cellulose and cellulose/PEG showed increasingly higher values for the transitions at higher temperatures. Key words:TGA, Bio-cellulose, PEG.

13.
ACS Appl Mater Interfaces ; 9(27): 22985-22993, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28621921

RESUMO

Inorganc silica-based aerogels, the earliest and widely used aerogels, have poorer mechanical properties than their organic substitutes, which are flammable. In this study, a novel polymeric aerogel with high strength, inherent flame retardancy, and cost-effectiveness, which is based on poly(vinyl alcohol) (PVA) cross-linked with melamine-formaldehyde (MF), was prepared under aqueous condition with an ecofriendly freeze-drying and postcuring process. Combined with the additional rigid MF network and benifited from the resulting unique infrastructure of inter-cross-linked flexible PVA segments and rigid MF segments, PVA-based aerogels exibited a significantly decreased degradation rate and sharply decreased peak heat release rate (PHRR) in cone calorimeter tests (by as much as 83%) compared with neat PVA. The polymer aerogels have a limiting oxygen index (LOI) as high as 36.5% and V-0 rating in UL-94 test. Furthermore, the aerogel samples exposured to harsh temperatures maintain their dimensions (<10% change), original mechanical strength and fire safety. Therefore, this work provides a novel stragegy for preparing pure organic polymeric aerogel materials with high mechanical strength, dimensional stability, and fire safety.

14.
ACS Appl Mater Interfaces ; 9(9): 8287-8296, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28186399

RESUMO

With unique advantages over inorganic aerogels including higher strengths and compressive moduli, greater toughness, and the ability to be fabricated as a flexible thin film, polymer aerogels have the potential to supplant inorganic aerogels in numerous applications. Among polymer aerogels, polyimide aerogels possess a high degree of high thermal stability as well as outstanding mechanical properties. However, while the onset of thermal decomposition for these materials is typically very high (greater than 500 °C), the polyimide aerogels undergo dramatic thermally induced shrinkage at temperatures well below their glass transition (Tg) or decomposition temperature, which limits their use. In this study, we show that shrinkage is reduced when a bulky moiety is incorporated in the polymer backbone. Twenty different formulations of polyimide aerogels were synthesized from 3,3,'4,4'-biphenyltetracarboxylic dianhydride (BPDA) and 4,4'-oxidianiline (ODA) or a combination of ODA and 9,9'-bis(4-aminophenyl)fluorene (BAPF) and cross-linked with 1,3,5-benzenetricarbonyl trichloride (BTC) in a statistically designed study. The polymer concentration, n-value, and molar concentration of ODA and BAPF were varied to demonstrate the effect of these variables on certain properties. Samples containing BAPF showed a reduction in shrinkage by as much as 50% after aging at elevated temperatures for 500 h compared to those made with ODA alone.

15.
ACS Appl Mater Interfaces ; 9(48): 42258-42265, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29140679

RESUMO

Biobased gelatins were used to improve the compressive properties and flammability of poly(vinyl alcohol)/montmorillonite (PVA/MMT) aerogels, fabricated using a simple and environmentally friendly freeze-drying method. Because of the excellent compatibility and strong interfacial adhesion between PVA and gelatin, the compressive moduli of aerogels were enhanced dramatically with the incorporation of gelatin. PVA/MMT/porcine-gelatin aerogels exhibit compressive modulus values as much as 12.4 MPa, nearly 300% that of the control PVA/MMT aerogel. The microstructure of the PVA/MMT/gelatin aerogels shows a three-dimensional co-continuous network. Combustion testing demonstrated that with the addition of gelatin, the self-extinguishing time of the aerogel was cut by half and the limiting-oxygen-index values increased to 28.5%. The peak heat-release rate, obtained from cone calorimetry, also decreased with the incorporation of gelatin. Thermogravimetric analysis demonstrated that the gelatins slowed the sharp decomposition of the PVA matrix polymer and increased the thermal stability of the aerogels at the major decomposition stage of the composite aerogels. These results indicate that as a green, biobased material, gelatin could simultaneously improve the mechanical properties and the properties of flame retardancy.

16.
ACS Appl Mater Interfaces ; 8(20): 13051-7, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27144401

RESUMO

Both inorganic and polymeric aerogels are well-known in the materials field. Inorganic aerogels are generally susceptible to brittle fracture, while polymeric aerogels tend to exhibit low modului and high flammability. To overcome these disadvantages, we introduce a new approach to the design of aerogels. A microporous poly(vinyl alcohol) (PVA) aerogel/silica nanocomposite was prepared by growing a silica conformal coating onto a PVA aerogel scaffold. Such aerogel/silica nanocomposites show significant improvement in their mechanical properties over either individual component. The nanocomposites show excellent fire resistance since the silica conformal coating serves as a barrier for heat transfer and mass loss of the coated organic materials. After a fluorocarbon silane treatment, the nanocomposites also show durable superhydrophobicity.

17.
Gels ; 2(2)2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30674147

RESUMO

Highly porous, low density palladium nanoparticle/clay aerogel materials have been produced and demonstrated to possess significant catalytic activity for olefin hydrogenation and isomerization reactions at low/ambient pressures. This technology opens up a new route for the production of catalytic materials.

18.
ACS Appl Mater Interfaces ; 8(47): 32557-32564, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27933853

RESUMO

Highly efficient flame retardant polyurethane foams with alginate/clay aerogel coatings were fabricated using a freeze-drying method. The microstructure and the interaction of the samples were characterized with scanning electron and optical microscopy (SEM) and (OM). The results show that PU foam has a porous structure with pore sizes of several hundred microns, and that of aerogel ranges from 10 to 30 µm. The PU foam matrix and the aerogel coatings have strong interactions, due to the infusion of aerogel into the porous structure of the foam and the tension generated during the freeze-drying process. Both the PU foam and the aerogel exhibit good thermal stabilities, with onset decomposition temperatures above 240 °C. Combustion parameters, including LOI, TTI, HRR, TSR, FIGRA, CO, and CO2, all indicate significantly reduced fire risk. Total heat release of all but one of the samples was maintained, indicating that the flame retardant mechanism is to decrease flame spread rate by forming a heat, oxygen, and smoke barrier, rather than by reducing fuel content. This facile and inexpensive post-treatment of PU foam could expand its fire safe applications.

19.
ACS Appl Mater Interfaces ; 8(1): 643-50, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26675804

RESUMO

Nonflammable materials based on renewable ammonium alginate and nano fillers (nanoscale magnesium hydroxide, nanoscale aluminum hydroxide, layered double hydroxide, sodium montmorillonite, and Kaolin) were fabricated through a simple, environmentally friendly freeze-drying process, in which water was used as a solvent. A simple and economic post-cross-linking method was used to obtain homogeneous samples. The microstructure of the cross-linked alginate aerogels show three-dimensional networks. These materials exhibit low densities (0.064-0.116 g cm(-3)), low thermal conductivities (0.024-0.046 W/m K), and useful mechanical strengths (0.7-3.5 MPa). The aerogels also exhibit high thermal stabilities and achieve inherent nonflammability with limiting oxygen indexes (LOI) higher than 60. Related properties were conducted and analyzed by cone calorimeter (CC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). These results combine to suggest promising prospects for use of these aerogel nanocomposites in a range of applications.

20.
ACS Appl Mater Interfaces ; 8(15): 9917-24, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27045343

RESUMO

A novel biomass-based mechanically strong and electrically conductive polymer aerogel was fabricated from aniline and biodegradable pectin. The strong hydrogen bonding interactions between polyaniline (PANI) and pectin resulted in a defined structure and enhanced properties of the aerogel. All the resultant aerogels exhibited self-surppoted 3D nanoporous network structures with high surface areas (207-331m(2)/g) and hierarchical pores. The results from electrical conductivity measurements and compressive tests revealed that these aerogels also had favorable conductivities (0.002-0.1 S/m) and good compressive modulus (1.2-1.4 MPa). The aerogel further used as electrode for supercapacitors showed enhanced capacitive performance (184 F/g at 0.5 A/g). Over 74% of the initial capacitance was maintained after repeating 1000 cycles of the cylic voltammetry test, while the capacitance retention of PANI was only 57%. The improved electrochemical performance may be attributed to the combinative properties of good electrical conductivity, BET surface areas, and stable nanoporous structure of the aerogel. Thus, this aerogel shows great potential as electrode materials for supercapacitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA