Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
EMBO Rep ; 19(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29523648

RESUMO

When Drosophila melanogaster feeds on Pseudomonas aeruginosa, some bacteria cross the intestinal barrier and eventually proliferate in the hemocoel. This process is limited by hemocytes through phagocytosis. P. aeruginosa requires the quorum-sensing regulator RhlR to elude the cellular immune response of the fly. RhlI synthesizes the autoinducer signal that activates RhlR. Here, we show that rhlI mutants are unexpectedly more virulent than rhlR mutants, both in fly and in nematode intestinal infection models, suggesting that RhlR has RhlI-independent functions. We also report that RhlR protects P. aeruginosa from opsonization mediated by the Drosophila thioester-containing protein 4 (Tep4). RhlR mutant bacteria show higher levels of Tep4-mediated opsonization, as compared to rhlI mutants, which prevents lethal bacteremia in the Drosophila hemocoel. In contrast, in a septic model of infection, in which bacteria are introduced directly into the hemocoel, Tep4 mutant flies are more resistant to wild-type P. aeruginosa, but not to the rhlR mutant. Thus, depending on the infection route, the Tep4 opsonin can either be protective or detrimental to host defense.


Assuntos
Proteínas de Bactérias/genética , RNA Helicases DEAD-box/genética , Ligases/genética , Fagocitose , Pseudomonas aeruginosa/genética , Percepção de Quorum/genética , Fatores de Transcrição/genética , Animais , Caenorhabditis elegans/microbiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/imunologia , Drosophila melanogaster/imunologia , Drosophila melanogaster/microbiologia , Regulação Bacteriana da Expressão Gênica , Intestinos/imunologia , Intestinos/microbiologia , Pseudomonas aeruginosa/patogenicidade , Receptores de Reconhecimento de Padrão/imunologia , Virulência
2.
Glia ; 66(6): 1160-1175, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28960551

RESUMO

Neuronal activity requires a vast amount of energy. Energy use in the brain is spatially and temporally dynamic, which reflects the changing activity of the neuronal circuits and might be important for modulating neuronal output. Much recent work has focused on understanding how brain glial cells take up nutrients from circulation and subsequently provide metabolic precursors to neurons. However, within the neurons, modulation of cellular metabolic pathway flux also regulates excitability and signaling. A coherent understanding of the links between energy availability and metabolism, neural signaling, and higher-level phenotypes like behavior requires a synthesis of the understanding of glial and neuronal metabolic dynamics. In the current review, we address this synthesis in the context of insect brain metabolism. Insects not only show evidence of a metabolic division of labor and plasticity in neural metabolism that closely resembles that observed in vertebrate species, there also seem to be direct links between brain metabolic dynamics and behavioral phenotypes. We summarize the current knowledge about the metabolic fuels available to the insect nervous system and how they are transported and distributed to the different neural cell types. We discuss the possibility of an ANLS-like metabolic division of labor between glial cells and neurons, and how it is regulated. We then discuss plasticity in flux through energy metabolic pathways in neurons, how flux is regulated, and how it influences neural signaling. We end by discussing how metabolic dynamics in the glia and neurons may interact to impact signaling.


Assuntos
Comportamento Animal/fisiologia , Metabolismo Energético , Insetos/metabolismo , Neurônios/metabolismo , Animais , Modelos Animais , Neuroglia/metabolismo
3.
Neurobiol Dis ; 107: 15-31, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28237316

RESUMO

The nervous system in higher vertebrates is separated from the circulation by a layer of specialized endothelial cells. It protects the sensitive neurons from harmful blood-derived substances, high and fluctuating ion concentrations, xenobiotics or even pathogens. To this end, the brain endothelial cells and their interlinking tight junctions build an efficient diffusion barrier. A structurally analogous diffusion barrier exists in insects, where glial cell layers separate the hemolymph from the neural cells. Both types of diffusion barriers, of course, also prevent influx of metabolites from the circulation. Because neuronal function consumes vast amounts of energy and necessitates influx of diverse substrates and metabolites, tightly regulated transport systems must ensure a constant metabolite supply. Here, we review the current knowledge about transport systems that carry key metabolites, amino acids, lipids and carbohydrates into the vertebrate and Drosophila brain and how this transport is regulated. Blood-brain and hemolymph-brain transport functions are conserved and we can thus use a simple, genetically accessible model system to learn more about features and dynamics of metabolite transport into the brain.


Assuntos
Transporte Biológico/fisiologia , Barreira Hematoencefálica/metabolismo , Hemolinfa/metabolismo , Animais , Humanos , Insetos , Mamíferos
4.
Artigo em Inglês | MEDLINE | ID: mdl-38438188

RESUMO

Astrocytic metabolism has taken center stage. Interposed between the neuron and the vasculature, astrocytes exert control over the fluxes of energy and building blocks required for neuronal activity and plasticity. They are also key to local detoxification and waste recycling. Whereas neurons are metabolically rigid, astrocytes can switch between different metabolic profiles according to local demand and the nutritional state of the organism. Their metabolic state even seems to be instructive for peripheral nutrient mobilization and has been implicated in information processing and behavior. Here, we summarize recent progress in our understanding of astrocytic metabolism and its effects on metabolic homeostasis and cognition.

5.
Nat Commun ; 14(1): 2996, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37225684

RESUMO

Neuronal function is highly energy demanding and thus requires efficient and constant metabolite delivery by glia. Drosophila glia are highly glycolytic and provide lactate to fuel neuronal metabolism. Flies are able to survive for several weeks in the absence of glial glycolysis. Here, we study how Drosophila glial cells maintain sufficient nutrient supply to neurons under conditions of impaired glycolysis. We show that glycolytically impaired glia rely on mitochondrial fatty acid breakdown and ketone body production to nourish neurons, suggesting that ketone bodies serve as an alternate neuronal fuel to prevent neurodegeneration. We show that in times of long-term starvation, glial degradation of absorbed fatty acids is essential to ensure survival of the fly. Further, we show that Drosophila glial cells act as a metabolic sensor and can induce mobilization of peripheral lipid stores to preserve brain metabolic homeostasis. Our study gives evidence of the importance of glial fatty acid degradation for brain function, and survival, under adverse conditions in Drosophila.


Assuntos
Drosophila , Neuroglia , Animais , Oxirredução , Ácidos Graxos , Corpos Cetônicos , Ácido Láctico
6.
Methods Mol Biol ; 2540: 401-414, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35980591

RESUMO

The rather recent development of genetically encoded metabolite sensors has changed the way we can study metabolism in living cells, ex vivo tissues, and in vivo immensely. In recent years, these sensors have also been adapted for use in Drosophila tissues. Here, we describe a standard protocol to image such sensors in ex vivo Drosophila larval brains using the glucose sensor FLII12Pglu-700µÎ´6. The protocol, however, can be adapted for the use of other sensors, tissues, and can even be used in vivo.


Assuntos
Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência , Animais , Técnicas Biossensoriais/métodos , Drosophila/genética , Transferência Ressonante de Energia de Fluorescência/métodos
7.
ACS Sens ; 7(11): 3278-3286, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36306435

RESUMO

Lactate is an energy substrate and an intercellular signal, which can be monitored in intact cells with the genetically encoded FRET indicator Laconic. However, the structural complexity, need for sophisticated equipment, and relatively small fluorescent change limit the use of FRET indicators for subcellular targeting and development of high-throughput screening methodologies. Using the bacterial periplasmic binding protein TTHA0766 from Thermus thermophilus, we have now developed a single-fluorophore indicator for lactate, CanlonicSF. This indicator exhibits a maximal fluorescence change of 200% and a KD of ∼300 µM. The fluorescence is not affected by other monocarboxylates. The lactate indicator was not significantly affected by Ca2+ at the physiological concentrations prevailing in the cytosol, endoplasmic reticulum, and extracellular space, but was affected by Ca2+ in the low micromolar range. Targeting the indicator to the endoplasmic reticulum revealed for the first time sub-cellular lactate dynamics. Its improved lactate-induced fluorescence response permitted the development of a multiwell plate assay to screen for inhibitors of the monocarboxylate transporters MCTs, a pharmaceutical target for cancer and inflammation. The functionality of the indicator in living tissue was demonstrated in the brain of Drosophila melanogaster larvae. CanlonicSF is well suited to explore lactate dynamics with sub-cellular resolution in intact systems.


Assuntos
Drosophila melanogaster , Ácido Láctico , Animais , Corantes Fluorescentes/química , Transferência Ressonante de Energia de Fluorescência/métodos , Retículo Endoplasmático/metabolismo , Ionóforos
8.
Dev Neurobiol ; 81(5): 438-452, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32096904

RESUMO

Animals are able to move and react in manifold ways to external stimuli. Thus, environmental stimuli need to be detected, information must be processed, and, finally, an output decision must be transmitted to the musculature to get the animal moving. All these processes depend on the nervous system which comprises an intricate neuronal network and many glial cells. Glial cells have an equally important contribution in nervous system function as their neuronal counterpart. Manifold roles are attributed to glia ranging from controlling neuronal cell number and axonal pathfinding to regulation of synapse formation, function, and plasticity. Glial cells metabolically support neurons and contribute to the blood-brain barrier. All of the aforementioned aspects require extensive cell-cell interactions between neurons and glial cells. Not surprisingly, many of these processes are found in all phyla executed by evolutionarily conserved molecules. Here, we review the recent advance in understanding neuron-glia interaction in Drosophila melanogaster to suggest that work in simple model organisms will shed light on the function of mammalian glial cells, too.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila melanogaster , Mamíferos , Neuroglia/fisiologia , Neurônios/fisiologia
9.
Elife ; 102021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34032568

RESUMO

During hunger or malnutrition, animals prioritize alimentation of the brain over other organs to ensure its function and, thus, their survival. This protection, also-called brain sparing, is described from Drosophila to humans. However, little is known about the molecular mechanisms adapting carbohydrate transport. Here, we used Drosophila genetics to unravel the mechanisms operating at the blood-brain barrier (BBB) under nutrient restriction. During starvation, expression of the carbohydrate transporter Tret1-1 is increased to provide more efficient carbohydrate uptake. Two mechanisms are responsible for this increase. Similar to the regulation of mammalian GLUT4, Rab-dependent intracellular shuttling is needed for Tret1-1 integration into the plasma membrane; even though Tret1-1 regulation is independent of insulin signaling. In addition, starvation induces transcriptional upregulation that is controlled by TGF-ß signaling. Considering TGF-ß-dependent regulation of the glucose transporter GLUT1 in murine chondrocytes, our study reveals an evolutionarily conserved regulatory paradigm adapting the expression of sugar transporters at the BBB.


Assuntos
Barreira Hematoencefálica , Metabolismo dos Carboidratos , Transdução de Sinais , Inanição , Fator de Crescimento Transformador beta/metabolismo , Animais , Transporte Biológico , Drosophila , Regulação da Expressão Gênica , Glucose/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Transcrição Gênica , Trealose/metabolismo , Regulação para Cima , Proteínas rab de Ligação ao GTP/metabolismo
10.
Front Behav Neurosci ; 14: 612430, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33551766

RESUMO

Neuronal function is highly energy demanding, requiring efficient transport of nutrients into the central nervous system (CNS). Simultaneously the brain must be protected from the influx of unwanted solutes. Most of the energy is supplied from dietary sugars, delivered from circulation via the blood-brain barrier (BBB). Therefore, selective transporters are required to shuttle metabolites into the nervous system where they can be utilized. The Drosophila BBB is formed by perineural and subperineurial glial cells, which effectively separate the brain from the surrounding hemolymph, maintaining a constant microenvironment. We identified two previously unknown BBB transporters, MFS3 (Major Facilitator Superfamily Transporter 3), located in the perineurial glial cells, and Pippin, found in both the perineurial and subperineurial glial cells. Both transporters facilitate uptake of circulating trehalose and glucose into the BBB-forming glial cells. RNA interference-mediated knockdown of these transporters leads to pupal lethality. However, null mutants reach adulthood, although they do show reduced lifespan and activity. Here, we report that both carbohydrate transport efficiency and resulting lethality found upon loss of MFS3 or Pippin are rescued via compensatory upregulation of Tret1-1, another BBB carbohydrate transporter, in Mfs3 and pippin null mutants, while RNAi-mediated knockdown is not compensated for. This means that the compensatory mechanisms in place upon mRNA degradation following RNA interference can be vastly different from those resulting from a null mutation.

11.
Elife ; 92020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32142409

RESUMO

Mitochondria generate ATP and building blocks for cell growth and regeneration, using pyruvate as the main substrate. Here we introduce PyronicSF, a user-friendly GFP-based sensor of improved dynamic range that enables real-time subcellular quantitation of mitochondrial pyruvate transport, concentration and flux. We report that cultured mouse astrocytes maintain mitochondrial pyruvate in the low micromolar range, below cytosolic pyruvate, which means that the mitochondrial pyruvate carrier MPC is poised to exert ultrasensitive control on the balance between respiration and anaplerosis/gluconeogenesis. The functionality of the sensor in living tissue is demonstrated in the brain of Drosophila melanogaster larvae. Mitochondrial subpopulations are known to coexist within a given cell, which differ in their morphology, mobility, membrane potential, and vicinity to other organelles. The present tool can be used to investigate how mitochondrial diversity relates to metabolism, to study the role of MPC in disease, and to screen for small-molecule MPC modulators.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Técnicas Biossensoriais , Proteínas de Drosophila/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Ácido Pirúvico/metabolismo , Animais , Proteínas de Transporte de Ânions/genética , Células COS , Linhagem Celular , Chlorocebus aethiops , Proteínas de Drosophila/genética , Drosophila melanogaster , Células HEK293 , Células HeLa , Humanos , Larva/metabolismo , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/genética , Modelos Biológicos , Transportadores de Ácidos Monocarboxílicos/genética
12.
Cell Rep ; 31(7): 107659, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32433968

RESUMO

The mitochondrial electron transport chain (ETC) enables essential metabolic reactions; nonetheless, the cellular responses to defects in mitochondria and the modulation of signaling pathway outputs are not understood. We show that Notch signaling and ETC attenuation via knockdown of COX7a induces massive over-proliferation. The tumor-like growth is caused by a transcriptional response through the eIF2α-kinase PERK and ATF4, which activates the expression of metabolic enzymes, nutrient transporters, and mitochondrial chaperones. We find this stress adaptation to be beneficial for progenitor cell fitness, as it renders cells sensitive to proliferation induced by the Notch signaling pathway. Intriguingly, over-proliferation is not caused by transcriptional cooperation of Notch and ATF4, but it is mediated in part by pH changes resulting from the Warburg metabolism induced by ETC attenuation. Our results suggest that ETC function is monitored by the PERK-ATF4 pathway, which can be hijacked by growth-promoting signaling pathways, leading to oncogenic pathway activity.


Assuntos
Drosophila/metabolismo , eIF-2 Quinase/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Proliferação de Células/fisiologia , Células Cultivadas , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Masculino , Receptores Notch/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição , Efeito Warburg em Oncologia
13.
Cell Rep ; 32(9): 108092, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877674

RESUMO

Lactate is used as an energy source by producer cells or shuttled to neighboring cells and tissues. Both glucose and lactate fulfill the bioenergetic demand of neurons, the latter imported from astrocytes. The contribution of astrocytic lactate to neuronal bioenergetics and the mechanisms of astrocytic lactate production are incompletely understood. Through in vivo1H magnetic resonance spectroscopy, 13C glucose mass spectroscopy, and electroencephalographic and molecular studies, here we show that the energy sensor AMP activated protein kinase (AMPK) regulates neuronal survival in a non-cell-autonomous manner. Ampk-null mice are deficient in brain lactate and are seizure prone. Ampk deletion in astroglia, but not neurons, causes neuronal loss in both mammalian and fly brains. Mechanistically, astrocytic AMPK phosphorylated and destabilized thioredoxin-interacting protein (TXNIP), enabling expression and surface translocation of the glucose transporter GLUT1, glucose uptake, and lactate production. Ampk loss in astrocytes causes TXNIP hyperstability, GLUT1 misregulation, inadequate glucose metabolism, and neuronal loss.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Astrócitos/metabolismo , Ácido Láctico/metabolismo , Neurônios/metabolismo , Animais , Morte Celular , Humanos , Camundongos
14.
J Insect Physiol ; 106(Pt 1): 55-64, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28733241

RESUMO

All complex nervous systems are metabolically separated from circulation by a blood-brain barrier (BBB) that prevents uncontrolled leakage of solutes into the brain. Thus, all metabolites needed to sustain energy homeostasis must be transported across this BBB. In invertebrates, such as Drosophila, the major carbohydrate in circulation is the disaccharide trehalose and specific trehalose transporters are expressed by the glial BBB. Here we analyzed whether glucose is able to contribute to energy homeostasis in Drosophila. To study glucose influx into the brain we utilized a genetically encoded, FRET-based glucose sensor expressed in a cell type specific manner. When confronted with glucose all brain cells take up glucose within two minutes. In order to characterize the glucose transporter involved, we studied Drosophila Glut1, the homologue of which is primarily expressed by the BBB-forming endothelial cells and astrocytes in the mammalian nervous system. In Drosophila, however, Glut1 is expressed in neurons and is not found at the BBB. Thus, Glut1 cannot contribute to initial glucose uptake from the hemolymph. To test whether gap junctional coupling between the BBB forming cells and other neural cells contributes to glucose distribution we assayed these junctions using RNAi experiments and only found a minor contribution of gap junctions to glucose metabolism. Our results provide the entry point to further dissect the mechanisms underlying glucose distribution and offer new opportunities to understand brain metabolism.


Assuntos
Drosophila/metabolismo , Glucose/metabolismo , Animais , Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , Feminino , Transferência Ressonante de Energia de Fluorescência , Junções Comunicantes , Glucose/análise , Transportador de Glucose Tipo 1/metabolismo , Técnicas In Vitro , Neuroglia/metabolismo
15.
Cell Metab ; 26(5): 701-702, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29117544

RESUMO

In Drosophila, neuronal mitochondria that lack OXPHOS generate ROS-protective fatty acids and lipid droplets in associated glia. In this issue, Liu et al. (2017) demonstrate that neuronal lipid synthesis is driven by the glial lactate shuttle. This lipoprotein-dependent deposition of lipids may be at the origin of glial specializations evolving in vertebrates.


Assuntos
Ácido Láctico , Gotículas Lipídicas , Animais , Apolipoproteínas E , Lipídeos , Neuroglia , Neurônios , Espécies Reativas de Oxigênio
16.
Brain Res ; 1641(Pt A): 122-129, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-26367447

RESUMO

Neuronal function requires constant working conditions and a well-balanced supply of ions and metabolites. The metabolic homeostasis in the nervous system crucially depends on the presence of glial cells, which nurture and isolate neuronal cells. Here we review recent findings on how these tasks are performed by glial cells in the genetically amenable model organism Drosophila melanogaster. Despite the small size of its nervous system, which would allow diffusion of metabolites, a surprising division of labor between glial cells and neurons is evident. Glial cells are glycolytically active and transfer lactate and alanine to neurons. Neurons in turn do not require glycolysis but can use the glially provided compounds for their energy homeostasis. Besides feeding neurons, glial cells also insulate neuronal axons in a way similar to Remak fibers in the mammalian nervous system. The molecular mechanisms orchestrating this insulation require neuregulin signaling and resemble the mechanisms controlling glial differentiation in mammals surprisingly well. We hypothesize that metabolic cross talk and insulation of neurons by glial cells emerged early during evolution as two closely interlinked features in the nervous system. This article is part of a Special Issue entitled SI: Myelin Evolution.


Assuntos
Axônios/metabolismo , Drosophila melanogaster/metabolismo , Neuroglia/metabolismo , Animais , Evolução Biológica , Encéfalo/metabolismo , Neurônios/metabolismo
17.
Cell Host Microbe ; 20(6): 716-730, 2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27889464

RESUMO

Besides digesting nutrients, the gut protects the host against invasion by pathogens. Enterocytes may be subjected to damage by both microbial and host defensive responses, causing their death. Here, we report a rapid epithelial response that alleviates infection stress and protects the enterocytes from the action of microbial virulence factors. Intestinal epithelia exposed to hemolysin, a pore-forming toxin secreted by Serratia marcescens, undergo an evolutionarily conserved process of thinning followed by the recovery of their initial thickness within a few hours. In response to hemolysin attack, Drosophila melanogaster enterocytes extrude most of their apical cytoplasm, including damaged organelles such as mitochondria, yet do not lyse. We identify two secreted peptides, the expression of which requires CyclinJ, that mediate the recovery phase in which enterocytes regain their original shape and volume. Epithelial thinning and recovery constitute a fast and efficient response to intestinal infections, with pore-forming toxins acting as alarm signals.


Assuntos
Toxinas Bacterianas/toxicidade , Sistema Digestório/efeitos dos fármacos , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Animais , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Sistema Digestório/imunologia , Sistema Digestório/microbiologia , Sistema Digestório/patologia , Modelos Animais de Doenças , Drosophila melanogaster , Enterócitos/patologia , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/toxicidade , Enteropatias/microbiologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Microvilosidades/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Infecções por Serratia , Serratia marcescens/metabolismo , Serratia marcescens/patogenicidade , Sobrevida , Varroidae , Fatores de Virulência
18.
Mech Dev ; 138 Pt 1: 50-5, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26103549

RESUMO

The blood-brain barrier is an evolutionary ancient structure that provides direct support and protection of the nervous system. In all systems, it establishes a tight diffusion barrier that hinders uncontrolled paracellular diffusion into the nervous system. In invertebrates, the blood-brain barrier separates the nervous system from the hemolymph. Thus, the barrier-forming cells need to actively import ions and nutrients into the nervous system. In addition, metabolic or environmental signals from the external world have to be transmitted across the barrier into the nervous system. The first blood-brain barrier that formed during evolution was most likely based on glial cells. Invertebrates as well as primitive vertebrates still have a purely glial-based blood-brain barrier. Here we review the development and function of the barrier forming glial cells at the example of Drosophila.


Assuntos
Barreira Hematoencefálica/fisiologia , Encéfalo/fisiologia , Hemolinfa/fisiologia , Neurônios/fisiologia , Animais , Transporte Biológico , Drosophila
19.
Cell Metab ; 22(3): 437-47, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26235423

RESUMO

Neuronal information processing requires a large amount of energy, indicating that sugars and other metabolites must be efficiently delivered. However, reliable neuronal function also depends on the maintenance of a constant microenvironment in the brain. Therefore, neurons are efficiently separated from circulation by the blood-brain barrier, and their long axons are insulated by glial processes. At the example of the Drosophila brain, we addressed how sugar is shuttled across the barrier to nurture neurons. We show that glial cells of the blood-brain barrier specifically take up sugars and that their metabolism relies on glycolysis, which, surprisingly, is dispensable in neurons. Glial cells secrete alanine and lactate to fuel neuronal mitochondria, and lack of glial glycolysis specifically in the adult brain causes neurodegeneration. Our work implies that a global metabolic compartmentalization and coupling of neurons and glial cells is a conserved, fundamental feature of bilaterian nervous systems independent of their size.


Assuntos
Barreira Hematoencefálica/metabolismo , Drosophila/fisiologia , Glicólise , Neuroglia/metabolismo , Neurônios/metabolismo , Trealose/metabolismo , Alanina/metabolismo , Animais , Barreira Hematoencefálica/citologia , Sobrevivência Celular , Drosophila/metabolismo , Metabolismo Energético , Feminino , Ácido Láctico/metabolismo , Locomoção , Neuroglia/citologia , Neurônios/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA