Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 181(2): 346-361.e17, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32302572

RESUMO

Stressed cells shut down translation, release mRNA molecules from polysomes, and form stress granules (SGs) via a network of interactions that involve G3BP. Here we focus on the mechanistic underpinnings of SG assembly. We show that, under non-stress conditions, G3BP adopts a compact auto-inhibited state stabilized by electrostatic intramolecular interactions between the intrinsically disordered acidic tracts and the positively charged arginine-rich region. Upon release from polysomes, unfolded mRNAs outcompete G3BP auto-inhibitory interactions, engendering a conformational transition that facilitates clustering of G3BP through protein-RNA interactions. Subsequent physical crosslinking of G3BP clusters drives RNA molecules into networked RNA/protein condensates. We show that G3BP condensates impede RNA entanglement and recruit additional client proteins that promote SG maturation or induce a liquid-to-solid transition that may underlie disease. We propose that condensation coupled to conformational rearrangements and heterotypic multivalent interactions may be a general principle underlying RNP granule assembly.


Assuntos
Grânulos Citoplasmáticos/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Citoplasma/metabolismo , Células HeLa , Humanos , Conformação de Ácido Nucleico , Organelas/metabolismo , Fosforilação , RNA Mensageiro/metabolismo , Estresse Fisiológico/genética
2.
Soft Matter ; 17(4): 853-862, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33232425

RESUMO

Biophysical properties of cells such as intracellular mass density and cell mechanics are known to be involved in a wide range of homeostatic functions and pathological alterations. An optical readout that can be used to quantify such properties is the refractive index (RI) distribution. It has been recently reported that the nucleus, initially presumed to be the organelle with the highest dry mass density (ρ) within the cell, has in fact a lower RI and ρ than its surrounding cytoplasm. These studies have either been conducted in suspended cells, or cells adhered on 2D substrates, neither of which reflects the situation in vivo where cells are surrounded by the extracellular matrix (ECM). To better approximate the 3D situation, we encapsulated cells in 3D covalently-crosslinked alginate hydrogels with varying stiffness, and imaged the 3D RI distribution of cells, using a combined optical diffraction tomography (ODT)-epifluorescence microscope. Unexpectedly, the nuclei of cells in 3D displayed a higher ρ than the cytoplasm, in contrast to 2D cultures. Using a Brillouin-epifluorescence microscope we subsequently showed that in addition to higher ρ, the nuclei also had a higher longitudinal modulus (M) and viscosity (η) compared to the cytoplasm. Furthermore, increasing the stiffness of the hydrogel resulted in higher M for both the nuclei and cytoplasm of cells in stiff 3D alginate compared to cells in compliant 3D alginate. The ability to quantify intracellular biophysical properties with non-invasive techniques will improve our understanding of biological processes such as dormancy, apoptosis, cell growth or stem cell differentiation.


Assuntos
Matriz Extracelular , Hidrogéis , Alginatos , Diferenciação Celular , Proliferação de Células
3.
Biophys J ; 115(5): 911-923, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30122291

RESUMO

The mechanical properties of biological tissues are increasingly recognized as important factors in developmental and pathological processes. Most existing mechanical measurement techniques either necessitate destruction of the tissue for access or provide insufficient spatial resolution. Here, we show for the first time to our knowledge a systematic application of confocal Brillouin microscopy to quantitatively map the mechanical properties of spinal cord tissues during biologically relevant processes in a contact-free and nondestructive manner. Living zebrafish larvae were mechanically imaged in all anatomical planes during development and after spinal cord injury. These experiments revealed that Brillouin microscopy is capable of detecting the mechanical properties of distinct anatomical structures without interfering with the animal's natural development. The Brillouin shift within the spinal cord remained comparable during development and transiently decreased during the repair processes after spinal cord transection. By taking into account the refractive index distribution, we explicitly determined the apparent longitudinal modulus and viscosity of different larval zebrafish tissues. Importantly, mechanical properties differed between tissues in situ and in excised slices. The presented work constitutes the first step toward an in vivo assessment of spinal cord tissue mechanics during regeneration, provides a methodical basis to identify key determinants of mechanical tissue properties, and allows us to test their relative importance in combination with biochemical and genetic factors during developmental and regenerative processes.


Assuntos
Larva/fisiologia , Fenômenos Mecânicos , Microscopia , Medula Espinal/diagnóstico por imagem , Medula Espinal/crescimento & desenvolvimento , Peixe-Zebra , Animais , Fenômenos Biomecânicos , Elasticidade , Processamento de Imagem Assistida por Computador , Larva/crescimento & desenvolvimento , Medula Espinal/fisiologia , Viscosidade
4.
Opt Lett ; 39(17): 5082-5, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25166079

RESUMO

Spectroscopic methods are established tools for nonintrusive measurements of flow velocity. However, those methods are either restricted by measuring pointwise or with low measurement rates of several hertz. To investigate fast unsteady phenomena, e.g., in sprays, volumetric (3D) measurement techniques with kHz rate are required. For this purpose, a spectroscopic technique is realized with a power amplified, frequency modulated laser and an Mfps high-speed camera. This allows fast continuous planar measurements of the velocity. Volumetric data is finally obtained by slewing the laser light sheet in depth with an oscillating microelectromechanical systems (MEMS) scanner. As a result, volumetric velocity measurements are obtained for 256×128×25 voxels over 14.4 mm×7.2 mm×6.5 mm with a repetition rate of 1 kHz, which allows the investigation of unsteady phenomena in sprays such as transients and local velocity oscillations. The respective measurement capabilities are demonstrated by experiments. Hence, a significant progress regarding the data rate was achieved in spectroscopy by using the Mfps high-speed camera, which enables new application fields such as the analysis of fast unsteady phenomena.

5.
J Acoust Soc Am ; 134(2): 1102-11, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23927110

RESUMO

To reduce the noise of machines such as aircraft engines, the development and propagation of sound has to be investigated. Since the applicability of microphones is limited due to their intrusiveness, contactless measurement techniques are required. For this reason, the present study describes an optical method based on the Doppler effect and its application for acoustic particle velocity (APV) measurements. While former APV measurements with Doppler techniques are point measurements, the applied system is capable of simultaneous measurements at multiple points. In its current state, the system provides linear array measurements of one component of the APV demonstrated by multi-tone experiments with tones up to 17 kHz for the first time.


Assuntos
Acústica , Aeronaves , Fluxometria por Laser-Doppler/métodos , Ruído dos Transportes/prevenção & controle , Acústica/instrumentação , Efeito Doppler , Desenho de Equipamento , Análise de Fourier , Fluxometria por Laser-Doppler/instrumentação , Modelos Lineares , Movimento (Física) , Pressão , Fatores de Tempo , Incerteza
6.
Nat Commun ; 14(1): 6814, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884489

RESUMO

Extracellular matrix (ECM) deposition after central nervous system (CNS) injury leads to inhibitory scarring in humans and other mammals, whereas it facilitates axon regeneration in the zebrafish. However, the molecular basis of these different fates is not understood. Here, we identify small leucine-rich proteoglycans (SLRPs) as a contributing factor to regeneration failure in mammals. We demonstrate that the SLRPs chondroadherin, fibromodulin, lumican, and prolargin are enriched in rodent and human but not zebrafish CNS lesions. Targeting SLRPs to the zebrafish injury ECM inhibits axon regeneration and functional recovery. Mechanistically, we find that SLRPs confer mechano-structural properties to the lesion environment that are adverse to axon growth. Our study reveals SLRPs as inhibitory ECM factors that impair axon regeneration by modifying tissue mechanics and structure, and identifies their enrichment as a feature of human brain and spinal cord lesions. These findings imply that SLRPs may be targets for therapeutic strategies to promote CNS regeneration.


Assuntos
Proteoglicanas , Proteoglicanos Pequenos Ricos em Leucina , Animais , Humanos , Proteoglicanas de Sulfatos de Condroitina , Peixe-Zebra , Decorina , Axônios , Regeneração Nervosa , Proteínas da Matriz Extracelular , Sistema Nervoso Central , Mamíferos
7.
Elife ; 112022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35639083

RESUMO

Migration of cells in the developing brain is integral for the establishment of neural circuits and function of the central nervous system. While migration modes during which neurons employ predetermined directional guidance of either preexisting neuronal processes or underlying cells have been well explored, less is known about how cells featuring multipolar morphology migrate in the dense environment of the developing brain. To address this, we here investigated multipolar migration of horizontal cells in the zebrafish retina. We found that these cells feature several hallmarks of amoeboid-like migration that enable them to tailor their movements to the spatial constraints of the crowded retina. These hallmarks include cell and nuclear shape changes, as well as persistent rearward polarization of stable F-actin. Interference with the organization of the developing retina by changing nuclear properties or overall tissue architecture hampers efficient horizontal cell migration and layer formation showing that cell-tissue interplay is crucial for this process. In view of the high proportion of multipolar migration phenomena observed in brain development, the here uncovered amoeboid-like migration mode might be conserved in other areas of the developing nervous system.


Assuntos
Amoeba , Peixe-Zebra , Animais , Movimento Celular/fisiologia , Neurônios/fisiologia , Retina
8.
Open Biol ; 12(6): 220078, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35728623

RESUMO

In processes such as development and regeneration, where large cellular and tissue rearrangements occur, cell fate and behaviour are strongly influenced by tissue mechanics. While most well-established tools probing mechanical properties require an invasive sample preparation, confocal Brillouin microscopy captures mechanical parameters optically with high resolution in a contact-free and label-free fashion. In this work, we took advantage of this tool and the transparency of the highly regenerative axolotl to probe its mechanical properties in vivo for the first time. We mapped the Brillouin frequency shift with high resolution in developing limbs and regenerating digits, the most studied structures in the axolotl. We detected a gradual increase in the cartilage Brillouin frequency shift, suggesting decreasing tissue compressibility during both development and regeneration. Moreover, we were able to correlate such an increase with the regeneration stage, which was undetected with fluorescence microscopy imaging. The present work evidences the potential of Brillouin microscopy to unravel the mechanical changes occurring in vivo in axolotls, setting the basis to apply this technique in the growing field of epimorphic regeneration.


Assuntos
Ambystoma mexicanum , Animais , Microscopia Confocal/métodos
9.
Mater Adv ; 3(15): 6179-6190, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35979502

RESUMO

Stretching individual living cells with light is a standard method to assess their mechanical properties. Yet, heat introduced by the laser light of optical stretchers may unwittingly change the mechanical properties of cells therein. To estimate the temperature induced by an optical trap, we introduce cell-sized, elastic poly(N-isopropylacrylamide) (PNIPAAm) microgels that relate temperature changes to hydrogel swelling. For their usage as a standardized calibration tool, we analyze the effect of free-radical chain-growth gelation (FCG) and polymer-analogous photogelation (PAG) on hydrogel network heterogeneity, micromechanics, and temperature response by Brillouin microscopy and optical diffraction tomography. Using a combination of tailor-made PNIPAAm macromers, PAG, and microfluidic processing, we obtain microgels with homogeneous network architecture. With that, we expand the capability of standardized microgels in calibrating and validating cell mechanics analysis, not only considering cell and microgel elasticity but also providing stimuli-responsiveness to consider dynamic changes that cells may undergo during characterization.

10.
Sci Rep ; 12(1): 10325, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725987

RESUMO

Adipose tissue expansion involves both differentiation of new precursors and size increase of mature adipocytes. While the two processes are well balanced in healthy tissues, obesity and diabetes type II are associated with abnormally enlarged adipocytes and excess lipid accumulation. Previous studies suggested a link between cell stiffness, volume and stem cell differentiation, although in the context of preadipocytes, there have been contradictory results regarding stiffness changes with differentiation. Thus, we set out to quantitatively monitor adipocyte shape and size changes with differentiation and lipid accumulation. We quantified by optical diffraction tomography that differentiating preadipocytes increased their volumes drastically. Atomic force microscopy (AFM)-indentation and -microrheology revealed that during the early phase of differentiation, human preadipocytes became more compliant and more fluid-like, concomitant with ROCK-mediated F-actin remodelling. Adipocytes that had accumulated large lipid droplets were more compliant, and further promoting lipid accumulation led to an even more compliant phenotype. In line with that, high fat diet-induced obesity was associated with more compliant adipose tissue compared to lean animals, both for drosophila fat bodies and murine gonadal adipose tissue. In contrast, adipose tissue of diabetic mice became significantly stiffer as shown not only by AFM but also magnetic resonance elastography. Altogether, we dissect relative contributions of the cytoskeleton and lipid droplets to cell and tissue mechanical changes across different functional states, such as differentiation, nutritional state and disease. Our work therefore sets the basis for future explorations on how tissue mechanical changes influence the behaviour of mechanosensitive tissue-resident cells in metabolic disorders.


Assuntos
Diabetes Mellitus Experimental , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Diferenciação Celular , Diabetes Mellitus Experimental/metabolismo , Lipídeos , Camundongos , Obesidade/metabolismo
11.
Elife ; 112022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35001870

RESUMO

Quantitative measurements of physical parameters become increasingly important for understanding biological processes. Brillouin microscopy (BM) has recently emerged as one technique providing the 3D distribution of viscoelastic properties inside biological samples - so far relying on the implicit assumption that refractive index (RI) and density can be neglected. Here, we present a novel method (FOB microscopy) combining BM with optical diffraction tomography and epifluorescence imaging for explicitly measuring the Brillouin shift, RI, and absolute density with specificity to fluorescently labeled structures. We show that neglecting the RI and density might lead to erroneous conclusions. Investigating the nucleoplasm of wild-type HeLa cells, we find that it has lower density but higher longitudinal modulus than the cytoplasm. Thus, the longitudinal modulus is not merely sensitive to the water content of the sample - a postulate vividly discussed in the field. We demonstrate the further utility of FOB on various biological systems including adipocytes and intracellular membraneless compartments. FOB microscopy can provide unexpected scientific discoveries and shed quantitative light on processes such as phase separation and transition inside living cells.


Assuntos
Células/citologia , Fluorescência , Espaço Intracelular , Microscopia/métodos , Tomografia Óptica/métodos , Núcleo Celular , Células/ultraestrutura , Células HeLa , Humanos , Refratometria
12.
Curr Biol ; 32(22): 4817-4831.e9, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36208624

RESUMO

Cell migration is crucial for organismal development and shapes organisms in health and disease. Although a lot of research has revealed the role of intracellular components and extracellular signaling in driving single and collective cell migration, the influence of physical properties of the tissue and the environment on migration phenomena in vivo remains less explored. In particular, the role of the extracellular matrix (ECM), which many cells move upon, is currently unclear. To overcome this gap, we use zebrafish optic cup formation, and by combining novel transgenic lines and image analysis pipelines, we study how ECM properties influence cell migration in vivo. We show that collectively migrating rim cells actively move over an immobile extracellular matrix. These cell movements require cryptic lamellipodia that are extended in the direction of migration. Quantitative analysis of matrix properties revealed that the topology of the matrix changes along the migration path. These changes in matrix topologies are accompanied by changes in the dynamics of cell-matrix interactions. Experiments and theoretical modeling suggest that matrix porosity could be linked to efficient migration. Indeed, interfering with matrix topology by increasing its porosity results in a loss of cryptic lamellipodia, less-directed cell-matrix interactions, and overall inefficient migration. Thus, matrix topology is linked to the dynamics of cell-matrix interactions and the efficiency of directed collective rim cell migration during vertebrate optic cup morphogenesis.


Assuntos
Comunicação Celular , Peixe-Zebra , Animais , Morfogênese , Movimento Celular , Matriz Extracelular/metabolismo
13.
Cancers (Basel) ; 13(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34771711

RESUMO

Altered biophysical properties of cancer cells and of their microenvironment contribute to cancer progression. While the relationship between microenvironmental stiffness and cancer cell mechanical properties and responses has been previously studied using two-dimensional (2D) systems, much less is known about it in a physiologically more relevant 3D context and in particular for multicellular systems. To investigate the influence of microenvironment stiffness on tumor spheroid mechanics, we first generated MCF-7 tumor spheroids within matrix metalloproteinase (MMP)-degradable 3D polyethylene glycol (PEG)-heparin hydrogels, where spheroids showed reduced growth in stiffer hydrogels. We then quantitatively mapped the mechanical properties of tumor spheroids in situ using Brillouin microscopy. Maps acquired for tumor spheroids grown within stiff hydrogels showed elevated Brillouin frequency shifts (hence increased longitudinal elastic moduli) with increasing hydrogel stiffness. Maps furthermore revealed spatial variations of the mechanical properties across the spheroids' cross-sections. When hydrogel degradability was blocked, comparable Brillouin frequency shifts of the MCF-7 spheroids were found in both compliant and stiff hydrogels, along with similar levels of growth-induced compressive stress. Under low compressive stress, single cells or free multicellular aggregates showed consistently lower Brillouin frequency shifts compared to spheroids growing within hydrogels. Thus, the spheroids' mechanical properties were modulated by matrix stiffness and degradability as well as multicellularity, and also to the associated level of compressive stress felt by tumor spheroids. Spheroids generated from a panel of invasive breast, prostate and pancreatic cancer cell lines within degradable stiff hydrogels, showed higher Brillouin frequency shifts and less cell invasion compared to those in compliant hydrogels. Taken together, our findings contribute to a better understanding of the interplay between cancer cells and microenvironment mechanics and degradability, which is relevant to better understand cancer progression.

14.
Front Cell Neurosci ; 12: 358, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356682

RESUMO

Many molecular and cellular pathogenic mechanisms of neurodegenerative diseases have been revealed. However, it is unclear what role a putatively impaired neuronal transport with respect to altered mechanical properties of neurons play in the initiation and progression of such diseases. The biochemical aspects of intracellular axonal transport, which is important for molecular movements through the cytoplasm, e.g., mitochondrial movement, has already been studied. Interestingly, transport deficiencies are associated with the emergence of the affliction and potentially linked to disease transmission. Transport along the axon depends on the normal function of the neuronal cytoskeleton, which is also a major contributor to neuronal mechanical properties. By contrast, little attention has been paid to the mechanical properties of neurons and axons impaired by neurodegeneration, and of membraneless, phase-separated organelles such as stress granules (SGs) within neurons. Mechanical changes may indicate cytoskeleton reorganization and function, and thus give information about the transport and other system impairment. Nowadays, several techniques to investigate cellular mechanical properties are available. In this review, we discuss how select biophysical methods to probe material properties could contribute to the general understanding of mechanisms underlying neurodegenerative diseases.

15.
Polymers (Basel) ; 10(10)2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30960980

RESUMO

Polysaccharide-based microgels have broad applications in multi-parametric cell cultures, cell-free biotechnology, and drug delivery. Multicomponent reactions like the Passerini three-component and the Ugi four-component reaction are shown in here to be versatile platforms for fabricating these polysaccharide microgels by droplet microfluidics with a narrow size distribution. While conventional microgel formation requires pre-modification of hydrogel building blocks to introduce certain functionality, in multicomponent reactions one building block can be simply exchanged by another to introduce and extend functionality in a library-like fashion. Beyond synthesizing a range of polysaccharide-based microgels utilizing hyaluronic acid, alginate and chitosan, exemplary in-depth analysis of hyaluronic acid-based Ugi four-component gels is conducted by colloidal probe atomic force microscopy, confocal Brillouin microscopy, quantitative phase imaging, and fluorescence correlation spectroscopy to elucidate the capability of microfluidic multicomponent reactions for forming defined polysaccharide microgel networks. Particularly, the impact of crosslinker amount and length is studied. A higher network density leads to higher Young's moduli accompanied by smaller pore sizes with lower diffusion coefficients of tracer molecules in the highly homogeneous network, and vice versa. Moreover, tailored building blocks allow for crosslinking the microgels and incorporating functional groups at the same time as demonstrated for biotin-functionalized, chitosan-based microgels formed by Ugi four-component reaction. To these microgels, streptavidin-labeled enzymes are easily conjugated as shown for horseradish peroxidase (HRP), which retains its activity inside the microgels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA