Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Beilstein J Org Chem ; 20: 41-51, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38230356

RESUMO

The reactions of 2,4-di-tert-butyl-6-(diphenylphosphino)phenol and various Michael acceptors (acrylonitrile, acrylamide, methyl vinyl ketone, several acrylates, methyl vinyl sulfone) yield the respective phosphonium phenolate zwitterions at room temperature. Nine different zwitterions were synthesized and fully characterized. Zwitterions with the poor Michael acceptors methyl methacrylate and methyl crotonate formed, but could not be isolated in pure form. The solid-state structures of two phosphonium phenolate molecules were determined by single-crystal X-ray crystallography. The bonding situation in the solid state together with NMR data suggests an important contribution of an ylidic resonance structure in these molecules. The phosphonium phenolates are characterized by UV-vis absorptions peaking around 360 nm and exhibit a negative solvatochromism. An analysis of the kinetics of the zwitterion formation was performed for three Michael acceptors (acrylonitrile, methyl acrylate, and acrylamide) in two different solvents (chloroform and methanol). The results revealed the proton transfer step necessary to stabilize the initially formed carbanion as the rate-determining step. A preorganization of the carbonyl bearing Michael acceptors allowed for reasonable fast direct proton transfer from the phenol in aprotic solvents. In contrast, acrylonitrile, not capable of forming a similar preorganization, is hardly reactive in chloroform solution, while in methanol the corresponding phosphonium phenolate is formed.

2.
Angew Chem Int Ed Engl ; 62(45): e202311341, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37677110

RESUMO

Chemical amplification is a well-established concept in photoresist technology, wherein one photochemical event leads to a cascade of follow-up reactions that facilitate a controlled change in the solubility of a polymer. Herein, we transfer this concept to dynamic polymer networks to liberate both catalyst and functional groups required for bond exchange reactions under UV irradiation. For this, we exploit a photochemically generated acid to catalyse a deprotection reaction of an acid-labile tert-butoxycarbonyl group, which is employed to mask the hydroxy groups of a vinyl monomer. At the same time, the released acid serves as a catalyst for thermo-activated transesterifications between the deprotected hydroxy and ester moieties. Introduced in an orthogonally cured (450 nm) thiol-click photopolymer, this approach allows for a spatio-temporally controlled activation of bond exchange reactions, which is crucial in light of the creep resistance versus reflow ability trade-off of dynamic polymer networks.

3.
Langmuir ; 36(35): 10429-10437, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32787070

RESUMO

In this report, we present a method to characterize the kinetics of electron transfer across the bilayer of a unilamellar liposome composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine. The method utilizes synthetic phospholipids containing noninvasive nitroxide spin labels having the >N-O• moiety at well-defined distances from the outer surface of the liposome to serve as reporters for their local environment and, at the same time, permit measurement of the kinetics of electron transfer. We used 5-doxyl and 16-doxyl stearic acids. The paramagnetic >N-O• moiety is photo-oxidized to the corresponding diamagnetic oxoammonium cation by a ruthenium electron acceptor formed in the solution. Electron transfer is monitored by three independent spectroscopic methods: by both steady-state and time-resolved electron paramagnetic resonance and by optical spectroscopy. These techniques allowed us to differentiate between the electron transfer rates of nitroxides located in the outer leaflet of the phospholipid bilayer and of those located in the inner leaflet. Measurement of electron transfer rates as a function of temperature revealed a low-activation barrier (ΔG‡ ∼ 40 kJ/mol) that supports a tunneling mechanism.

4.
Angew Chem Int Ed Engl ; 59(51): 22943-22946, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-32815619

RESUMO

We show the synthesis of a redox-active quinone, 2-methoxy-1,4-hydroquinone (MHQ), from a bio-based feedstock and its suitability as electrolyte in aqueous redox flow batteries. We identified semiquinone intermediates at insufficiently low pH and quinoid radicals as responsible for decomposition of MHQ under electrochemical conditions. Both can be avoided and/or stabilized, respectively, using H3 PO4 electrolyte, allowing for reversible cycling in a redox flow battery for hundreds of cycles.

5.
Chemistry ; 25(38): 8982-8986, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31070829

RESUMO

Tailor-made photoinitiators play an important role for efficient radical polymerisations in aqueous media, especially in hydrogel manufacturing. Bis(acyl)phosphane oxides (BAPOs) are among the most active initiators. Herein, we show that they display a remarkable photochemistry in aqueous and alcoholic media: Photolysis of BAPOs in the presence of water or alcohols provides a new delocalized π-radical, which does not participate in the polymerization. It either converts into a monoacylphosphane oxide acting as a secondary photoactive species or it works as a one-electron reducing agent. Upon the electron-transfer process, it again produces a dormant photoinitiator. We have established the structure and the chemistry of this π radical using steady-state and time-resolved (CIDEP) EPR together with ESI-MS, NMR spectroscopy, and DFT calculations. Our results show that bis(acyl)phosphane oxides act as bifunctional reagents when applied in aqueous and alcoholic media.

6.
J Org Chem ; 84(23): 15184-15191, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31675234

RESUMO

Cholesterol (Ch) is an integral part of cell membrane, where it is prone to oxidation. In humans, oxidation of Ch is commonly linked to various pathologies like Alzheimer's disease, atherosclerosis, and even cancer, which proceed via mechanisms involving enzymatic and free radical pathways. The latter begin with hydrogen abstraction (HA) from Ch by a reactive free radical. It has been established that the most efficient HA from Ch occurs at C7, although HA from C4 by peroxyl radicals has recently been observed. Conversely, HA from Ch positions other than the thermodynamically preferred C7 or C4 has never been reported. We have designed a Ch derivative where a benzophenone moiety is linked to C7 by a covalent bond. This mirrors a specific orientation of Ch within a confined environment. Product analysis and time-resolved spectroscopic studies reveal an unprecedented HA from C15, which is a thermodynamically unfavorable position. This indicates that a specific topology of reactants is crucial for the reactivity of Ch. The relative orientation of the reactants can also be relevant in biological membranes, where Ch, polyunsaturated fatty acids, and numerous oxidizing species are confined in highly restricted and anisotropic environments.


Assuntos
Colesterol/química , Hidrogênio/química , Conformação Molecular
7.
Angew Chem Int Ed Engl ; 58(37): 13101-13106, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31257671

RESUMO

The electrochemical conversion of N2 at ambient conditions using renewably generated electricity is an attractive approach for sustainable ammonia (NH3 ) production. Considering the chemical inertness of N2 , rational design of efficient and stable catalysts is required. Therefore, in this work, it is demonstrated that a C-doped TiO2 /C (C-Tix Oy /C) material derived from the metal-organic framework (MOF) MIL-125(Ti) can achieve a high Faradaic efficiency (FE) of 17.8 %, which even surpasses most of the established noble metal-based catalysts. On the basis of the experimental results and theoretical calculations, the remarkable properties of the catalysts can be attributed to the doping of carbon atoms into oxygen vacancies (OVs) and the formation of Ti-C bonds in C-Tix Oy . This binding motive is found to be energetically more favorable for N2 activation compared to the non-substituted OVs in TiO2 . This work elucidates that electrochemical N2 reduction reaction (NRR) performance can be largely improved by creating catalytically active centers through rational substitution of anions into metal oxides.

8.
Chemistry ; 23(22): 5299-5306, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28233922

RESUMO

Phenols with intramolecular hydrogen bond between a pendant base and the phenolic OH group react differently in polar and non-polar environments with electron/proton acceptors. This was demonstrated by using time resolved chemically induced dynamic nuclear polarization (TR CIDNP) and theoretical calculations. In benzene, those phenols undergo a concerted electron-proton transfer (EPT) that yields neutral ketyl and phenoxyl radicals. In polar acetonitrile, the reaction mechanism turns into an electron transfer from the phenol to the triplet ketone, accompanied by the shift of a proton from the phenolic OH group to the nitrogen atom of the pendant base to form a distonic radical cation. This behavior is similar to that of tyrosine H-bonded to basic residues in some radical enzymes. This solvent-induced mechanism switch in proton-coupled electron transfers is important in different biological systems, in which the same metabolites and intermediates can react differently depending on the specific local environments.

9.
Polymers (Basel) ; 15(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37050262

RESUMO

Thiyl radicals were generated from aromatic S-thioformates by photolysis. The corresponding photo-initiated decarbonylation allows initiating polymerization reactions in both acrylate- and thiol-acrylate-based resin systems. Compared to aromatic thiols, the introduction of the photolabile formyl group prevents undesired reactions with acrylate monomers allowing photoinitiators (PIs) with constant reactivity over storage. To demonstrate the potential of S-thioformates as PIs, the bifunctional molecule S,S'-(thiobis(4,1-phenylene))dimethanethioate (2b) was synthesized, providing reactivity under visible light excitation. Consequently, acrylate-based formulations could successfully be processed by digital light processing (DLP)-based stereolithography at 405 nm in high resolution.

10.
Monatsh Chem ; 149(3): 499-504, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29576659

RESUMO

ABSTRACT: We have investigated the photo-induced reduction of Cu2+-Cu0 using benzil/triethylamine mixtures. The formation of elemental Cu is indicated by the appearance of its characteristic plasmon absorption peaks at 515 nm and 620 nm. Importantly, the nature of the counterion of the Cu2+ salt affects the reduction process. In the presence of Cl-, the reduction proceeds faster than with SO42-. Photo-induced electron transfer between excited benzil and triethylamine leads to the benzil radical anion, which acts as the reducing agent for Cu2+ and generates Cu0.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA