Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 34(1)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36164977

RESUMO

Atomic layer deposited (ALD) Al2O3coatings were applied on black silicon (b-Si) structures. The coated nanostructures were investigated regarding their reflective and transmissive behaviour. For a systematic study of the influence of the Al2O3coating, ALD coatings with a varying layer thickness were deposited on three b-Si structures with different morphologies. With a scanning electron microscope the morphological evolution of the coating process on the structures was examined. The optical characteristics of the different structures were investigated by spectral transmission and reflection measurements. The usability of the structures for highly efficient absorbers and antireflection (AR) functionalities in the different spectral regions is discussed.

2.
Micromachines (Basel) ; 14(6)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37374789

RESUMO

Antireflective (AR) nanostructures offer an effective, broadband alternative to conventional AR coatings that could be used even under extreme conditions. In this publication, a possible fabrication process based on colloidal polystyrene (PS) nanosphere lithography for the fabrication of such AR structures on arbitrarily shaped fused silica substrates is presented and evaluated. Special emphasis is placed on the involved manufacturing steps in order to be able to produce tailored and effective structures. An improved Langmuir-Blodgett self-assembly lithography technique enabled the deposition of 200 nm PS spheres on curved surfaces, independent of shape or material-specific characteristics such as hydrophobicity. The AR structures were fabricated on planar fused silica wafers and aspherical planoconvex lenses. Broadband AR structures with losses (reflection + transmissive scattering) of <1% per surface in the spectral range of 750-2000 nm were produced. At the best performance level, losses were less than 0.5%, which corresponds to an improvement factor of 6.7 compared to unstructured reference substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA