Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Phys Rev Lett ; 131(11): 113003, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37774298

RESUMO

We have studied the stability of the smallest long-lived all carbon molecular dianion (C_{7}^{2-}) in new time domains and with a single ion at a time using a cryogenic electrostatic ion-beam storage ring. We observe spontaneous electron emission from internally excited dianions on millisecond timescales and monitor the survival of single colder C_{7}^{2-} molecules on much longer timescales. We find that their intrinsic lifetime exceeds several minutes-6 orders of magnitude longer than established from earlier experiments on C_{7}^{2-}. This is consistent with our calculations of vertical electron detachment energies predicting one inherently stable isomer and one isomer which is stable or effectively stable behind a large Coulomb barrier for C_{7}^{2-}→C_{7}^{-}+e^{-} separation.

2.
Phys Rev Lett ; 124(17): 173001, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32412256

RESUMO

We report the first experimental evidence of spontaneous electron emission from a homonuclear dimer anion through direct measurements of Ag_{2}^{-}→Ag_{2}+e^{-} decays on milliseconds and seconds timescales. This observation is very surprising as there is no avoided crossing between adiabatic energy curves to mediate such a process. The process is weak, yet dominates the decay signal after 100 ms when ensembles of internally hot Ag_{2}^{-} ions are stored in the cryogenic ion-beam storage ring, DESIREE, for 10 s. The electron emission process is associated with an instantaneous, very large reduction of the vibrational energy of the dimer system. This represents a dramatic deviation from a Born-Oppenheimer description of dimer dynamics.

3.
J Chem Phys ; 151(4): 044306, 2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31370544

RESUMO

We have measured fragment mass spectra and total destruction cross sections for protonated and deprotonated adenine following collisions with He at center-of-mass energies in the 20-240 eV range. Classical and ab initio molecular dynamics simulations are used to provide detailed information on the fragmentation pathways and suggest a range of alternative routes compared to those reported in earlier studies. These new pathways involve, for instance, losses of HNC molecules from protonated adenine and losses of NH2 or C3H2N2 from deprotonated adenine. The present results may be important to advance the understanding of how biomolecules may be formed and processed in various astrophysical environments.

4.
Phys Rev Lett ; 121(8): 083401, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30192576

RESUMO

We have measured total absolute cross sections for the mutual neutralization (MN) of O^{-} with O^{+} and N^{+}. A fine resolution (of about 50 meV) in the kinetic energy spectra of the product neutral atoms allows unique identification of the atomic states participating in the mutual neutralization process. Cross sections and branching ratios have also been calculated down to 1 meV center-of-mass collision energy for these two systems, with a multichannel Landau-Zener model and an asymptotic method for the ionic-covalent coupling matrix elements. The importance of two-electron processes in one-electron transfer is demonstrated by the dominant contribution of a core-excited configuration of the nitrogen atom in N^{+}+O^{-} collisions. This effect is partially accounted for by introducing configuration mixing in the evaluation of coupling matrix elements.

5.
Phys Rev Lett ; 121(7): 079901, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30169079

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.119.073001.

6.
Phys Rev Lett ; 119(7): 073001, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28949695

RESUMO

We apply near-threshold laser photodetachment to characterize the rotational quantum level distribution of OH^{-} ions stored in the cryogenic ion-beam storage ring DESIREE at Stockholm University. We find that the stored ions relax to a rotational temperature of 13.4±0.2 K with 94.9±0.3% of the ions in the rotational ground state. This is consistent with the storage ring temperature of 13.5±0.5 K as measured with eight silicon diodes but in contrast to all earlier studies in cryogenic traps and rings where the rotational temperatures were always much higher than those of the storage devices at their lowest temperatures. Furthermore, we actively modify the rotational distribution through selective photodetachment to produce an OH^{-} beam where 99.1±0.1% of approximately one million stored ions are in the J=0 rotational ground state. We measure the intrinsic lifetime of the J=1 rotational level to be 145±28 s.

7.
Phys Rev Lett ; 114(14): 143003, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25910117

RESUMO

We use a novel electrostatic ion storage ring to measure the radiative lifetime of the upper level in the 3p^{5} ^{2}P_{1/2}^{o}→3p^{5} ^{2}P_{3/2}^{o} spontaneous radiative decay in ^{32}S^{-} to be 503±54 sec. This is by orders of magnitude the longest lifetime ever measured in a negatively charged ion. Cryogenic cooling of the storage ring gives a residual-gas pressure of a few times 10^{-14} mbar at 13 K and storage of 10 keV sulfur anions for more than an hour. Our experimental results differ by 1.3σ from the only available theoretical prediction [P. Andersson et al., Phys. Rev. A 73, 032705 (2006)].

8.
J Chem Phys ; 142(14): 144305, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25877576

RESUMO

We have investigated the effectiveness of molecular hydrogen (H2) formation from Polycyclic Aromatic Hydrocarbons (PAHs) which are internally heated by collisions with keV ions. The present and earlier experimental results are analyzed in view of molecular structure calculations and a simple collision model. We estimate that H2 formation becomes important for internal PAH temperatures exceeding about 2200 K, regardless of the PAH size and the excitation agent. This suggests that keV ions may effectively induce such reactions, while they are unlikely due to, e.g., absorption of single photons with energies below the Lyman limit. The present analysis also suggests that H2 emission is correlated with multi-fragmentation processes, which means that the [PAH-2H](+) peak intensities in the mass spectra may not be used for estimating H2-formation rates.

9.
Phys Chem Chem Phys ; 16(40): 21980-7, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25205444

RESUMO

We report experimental total, absolute, fragmentation cross sections for anthracene C14H10, acridine C13H9N, and phenazine C12H8N2 ions colliding with He at center-of-mass energies close to 100 eV. In addition, we report results for the same ions colliding with Ne, Ar, and Xe at higher energies. The total fragmentation cross sections for these three ions are the same within error bars for a given target. The measured fragment mass distributions reveal significant contributions from both delayed (≫10(-12) s) statistical fragmentation processes as well as non-statistical, prompt (∼10(-15) s), single atom knockout processes. The latter dominate and are often followed by secondary statistical fragmentation. Classical Molecular Dynamics (MD) simulations yield separate cross sections for prompt and delayed fragmentation which are consistent with the experimental results. The intensity of the single C/N-loss peak, the signature of non-statistical fragmentation, decreases with the number of N atoms in the parent ion. The fragment intensity distributions for losses of more than one C or N atom are rather similar for C14H10 and C13H9N but differ strongly for C12H8N2 where weak C-N bonds often remain in the fragments after the first fragmentation step. This greatly increases their probability to fragment further. Distributions of internal energy remaining in the fragments after knockout are obtained from the MD simulations.

10.
J Chem Phys ; 140(22): 224306, 2014 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-24929387

RESUMO

We present scaling laws for absolute cross sections for non-statistical fragmentation in collisions between Polycyclic Aromatic Hydrocarbons (PAH/PAH(+)) and hydrogen or helium atoms with kinetic energies ranging from 50 eV to 10 keV. Further, we calculate the total fragmentation cross sections (including statistical fragmentation) for 110 eV PAH/PAH(+) + He collisions, and show that they compare well with experimental results. We demonstrate that non-statistical fragmentation becomes dominant for large PAHs and that it yields highly reactive fragments forming strong covalent bonds with atoms (H and N) and molecules (C6H5). Thus nonstatistical fragmentation may be an effective initial step in the formation of, e.g., Polycyclic Aromatic Nitrogen Heterocycles (PANHs). This relates to recent discussions on the evolution of PAHNs in space and the reactivities of defect graphene structures.

11.
Phys Rev Lett ; 110(18): 185501, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23683214

RESUMO

We report highly selective covalent bond modifications in collisions between keV alpha particles and van der Waals clusters of C(60) fullerenes. Surprisingly, C(119)(+) and C(118)(+) are the dominant molecular fusion products. We use molecular dynamics simulations to show that C(59)(+) and C(58)(+) ions--effectively produced in prompt knockout processes with He(2+)--react rapidly with C(60) to form dumbbell C(119)(+) and C(118)(+). Ion impact on molecular clusters in general is expected to lead to efficient secondary reactions of interest for astrophysics. These reactions are different from those induced by photons.


Assuntos
Partículas alfa , Fulerenos/química , Cátions Bivalentes/química , Hélio/química , Modelos Moleculares , Peso Molecular , Método de Monte Carlo , Termodinâmica
12.
J Chem Phys ; 139(3): 034309, 2013 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-23883029

RESUMO

We report experimental results for the ionization and fragmentation of weakly bound van der Waals clusters of n C60 molecules following collisions with Ar(2+), He(2+), and Xe(20+) at laboratory kinetic energies of 13 keV, 22.5 keV, and 300 keV, respectively. Intact singly charged C60 monomers are the dominant reaction products in all three cases and this is accounted for by means of Monte Carlo calculations of energy transfer processes and a simple Arrhenius-type [C60]n(+) → C60(+)+(n-1)C60 evaporation model. Excitation energies in the range of only ~0.7 eV per C60 molecule in a [C60]13(+) cluster are sufficient for complete evaporation and such low energies correspond to ion trajectories far outside the clusters. Still we observe singly and even doubly charged intact cluster ions which stem from even more distant collisions. For penetrating collisions the clusters become multiply charged and some of the individual molecules may be promptly fragmented in direct knock-out processes leading to efficient formations of new covalent systems. For Ar(2+) and He(2+) collisions, we observe very efficient C119(+) and C118(+) formation and molecular dynamics simulations suggest that they are covalent dumb-bell systems due to bonding between C59(+) or C58(+) and C60 during cluster fragmentation. In the Ar(2+) case, it is possible to form even smaller C120-2m(+) molecules (m = 2-7), while no molecular fusion reactions are observed for the present Xe(20+) collisions.

13.
Phys Rev Lett ; 108(15): 153003, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22587249

RESUMO

We have performed x-ray two-photon photoelectron spectroscopy using the Linac Coherent Light Source x-ray free-electron laser in order to study double core-hole (DCH) states of CO2, N2O, and N2. The experiment verifies the theory behind the chemical sensitivity of two-site DCH states by comparing a set of small molecules with respect to the energy shift of the two-site DCH state and by extracting the relevant parameters from this shift.

14.
J Chem Phys ; 134(3): 035102, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21261391

RESUMO

We have studied electron capture induced dissociation of a set of doubly protonated pentapeptides, all composed of one lysine (K) and either four glycine (G) or four alanine (A) residues, as a function of the sequence of these building blocks. Thereby the separation of the two charges, sequestered on the N-terminal amino group and the lysine side chain, is varied. The characteristic cleavage of N-C(α) bonds is observed for all peptides over the whole backbone length, with the charge carrying fragments always containing K. The resulting fragmentation patterns are very similar if G is replaced by A. In the case of [XKXXX+2H](2+) (X=A or G), a distinct feature is observed in the distribution of backbone cleavage fragments and the probability for ammonia loss is drastically reduced. This may be due to an isomer with an amide oxygen as protonation site giving rise to the observed increase in breakage at a specific site in the molecule. For the other peptides, a correlation with the distance between amide oxygen and the charge at the lysine side chain has been found. This may be an indication that it is only the contribution from this site to the charge stabilization of the amide π(*) orbitals which determines relative fragment intensities. For comparison, complexes with two crown ether molecules have been studied as well. The crown ether provides a shielding of the charge and prevents the peptide from folding and internal hydrogen bonding, which leads to a more uniform fragmentation behavior.


Assuntos
Elétrons , Oligopeptídeos/química , Amidas/química , Amônia/química , Éteres de Coroa/química , Ligação de Hidrogênio , Estrutura Molecular , Oxigênio/química , Dobramento de Proteína
15.
J Chem Phys ; 135(8): 084304, 2011 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-21895182

RESUMO

The loss of C(2)H(2) is a low activation energy dissociation channel for anthracene (C(14)H(10)) and acridine (C(13)H(9)N) cations. For the latter ion another prominent fragmentation pathway is the loss of HCN. We have studied these two dissociation channels by collision induced dissociation experiments of 50 keV anthracene cations and protonated acridine, both produced by electrospray ionization, in collisions with a neutral xenon target. In addition, we have carried out density functional theory calculations on possible reaction pathways for the loss of C(2)H(2) and HCN. The mass spectra display features of multi-step processes, and for protonated acridine the dominant first step process is the loss of a hydrogen from the N site, which then leads to C(2)H(2)/HCN loss from the acridine cation. With our calculations we have identified three pathways for the loss of C(2)H(2) from the anthracene cation, with three different cationic products: 2-ethynylnaphthalene, biphenylene, and acenaphthylene. The third product is the one with the overall lowest dissociation energy barrier. For the acridine cation our calculated pathway for the loss of C(2)H(2) leads to the 3-ethynylquinoline cation, and the loss of HCN leads to the biphenylene cation. Isomerization plays an important role in the formation of the non-ethynyl containing products. All calculated fragmentation pathways should be accessible in the present experiment due to substantial energy deposition in the collisions.

16.
J Chem Phys ; 135(6): 064302, 2011 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-21842928

RESUMO

We report on measurements of the ionization and fragmentation of polycyclic aromatic hydrocarbon (PAH) targets in Xe(20+) + C(16)H(10) and Xe(20+) + [C(16)H(10)](k) collisions and compare results for the two C(16)H(10) isomers: pyrene and fluoranthene. For both types of targets, i.e., for single PAH molecules isolated in vacuum or for isomerically pure clusters of one of the molecules, the resulting fragment spectra are surprisingly similar. However, we do observe weak but significant isomer effects. Although these are manifested in very different ways for the monomer and cluster targets, they both have at their roots small differences (<2.5 eV) between the total binding energies of neutral, and singly and multiply charged pyrene and fluoranthene monomers. The results will be discussed in view of the density functional theory calculations of ionization and dissociation energies for fluoranthene and pyrene. A simple classical over-the-barrier model is used to estimate cross sections for single- and multiple-electron transfer between PAHs and ions. Calculated single and multiple ionization energies, and the corresponding model PAH ionization cross sections, are given.

17.
Phys Rev Lett ; 105(21): 213401, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-21231303

RESUMO

We report the first experimental study of ions interacting with clusters of polycyclic aromatic hydrocarbon (PAH) molecules. Collisions between 11.25 keV 3He+ or 360 keV 129Xe20+ and weakly bound clusters of one of the smallest PAH molecules, anthracene, show that C14H10 clusters have much higher tendencies to fragment in ion collisions than other weakly bound clusters. The ionization is dominated by peripheral collisions in which the clusters, very surprisingly, are more strongly heated by Xe20+ collisions than by He+ collisions. The appearance size is k=15 for [C 14H10](k)2+.

18.
J Chem Phys ; 133(10): 104301, 2010 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-20849166

RESUMO

We find that the most stable fullerene isomers, C(70)-C(94), form efficiently in close-to central collisions between keV atomic ions and weakly bound clusters of more than 15 C(60)-molecules. We observe extraordinarily high yields of C(70) and marked preferences for C(78) and C(84). Larger even-size carbon molecules, C(96)-C(180), follow a smooth log-normal (statistical) intensity distribution. Measurements of kinetic energies indicate that C(70)-C(94) mainly are formed by coalescence reactions between small carbon molecules and C(60), while C(n) with n≥96 are due to self-assembly (of small molecules) and shrinking hot giant fullerenes.


Assuntos
Fulerenos/química , Íons/química , Cinética , Estereoisomerismo , Termodinâmica
19.
Phys Rev Lett ; 103(21): 213002, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-20366032

RESUMO

We have developed a small purely electrostatic ion-beam trap which may be operated in thermal equilibrium at precisely controlled temperatures down to 10 K. Thus, we avoid magnetic field induced mixing of quantum states and may effectively eliminate any influence from absorption of photons from blackbody radiation. We report the first correction-free measurement of the lifetime of the 1s2s2p {4}P{5/2}{0} level of 4He(-) yielding the high-precision result 359.0 +/- 0.7 micros. This result is an essential proof-of-principle for cryogenic electrostatic storage rings and traps for atomic and molecular physics.

20.
Rev Sci Instrum ; 79(7): 075109, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18681736

RESUMO

We report on the design, construction, and commissioning of a novel electrostatic ion storage ring of small dimensions--in the following referred to as "Mini-Ring." Mini-Ring consists of four horizontal parallel-plate deflectors and two conical electrostatic mirrors. Ions are injected through the two deflectors on the injection side and off axis with respect to the conical mirrors which face each other. The first injection deflector, originally at zero voltage, is switched to its set value such that the ions after one turn follow stable trajectories of lengths of roughly 30 cm. This design reduces the number of electrodes necessary to guide the ion beam through the ring in stable orbits. The six elements (deflectors and mirrors) are placed on a common grounded plate--the tabletop. Here, we present the design, ion trajectory simulations, and results of the first test experiments demonstrating the successful room-temperature operation of Mini-Ring at background pressures of 10(-6) - 10(-7) mbar.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA