Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Transfusion ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884363

RESUMO

BACKGROUND: During whole blood donation (BD), 500 mL of blood is drawn. The time interval between two BDs is at least 8-12 weeks. This period might be insufficient for restoring hemoglobin mass (Hbmass) and iron especially in women, who generally have lower Hbmass and iron availability. Since both variables influence physical performance, this pilot study aimed to monitor Hbmass, iron status, and maximum oxygen uptake (V̇O2max) recovery in women after a single BD. STUDY DESIGN AND METHODS: In 10 women (24.7 ± 1.7 years), Hbmass, hemoglobin concentration [Hb], iron status, and V̇O2max were assessed before and up to 12 weeks after a single BD. RESULTS: BD reduced Hbmass from 562 ± 70 g to 499 ± 64 g (p < .001). Although after 8 weeks no significant mean difference was detected, 7 women had not returned to baseline after 12 weeks. [Hb] did not return to initial values (13.4 ± 0.7 g/dL) after 12 weeks (12.9 ± 0.7 g/dL, p < .01). Ferritin decreased from baseline until week 6 (40.9 ± 34.2 ng/mL vs. 12.1 ± 6.9 ng/mL, p < .05) and was not restored after 12 weeks (18.4 ± 12.7 ng/mL, p < .05), with 6 out of 10 women exhibiting iron deficiency (ferritin <15 ng/mL). V̇O2max was reduced by 213 ± 47 mL/min (7.2 ± 1.2%; p < .001) and remained below baseline after 12 weeks (3.2 ± 1.4%, p < .01). DISCUSSION: For most pre-menopausal women, 12 weeks were not sufficient to recover from BD and achieve baseline Hbmass and iron stores resulting in prolonged reduction of aerobic capacity. A subsequent BD might lead to a severe anemia.

2.
Scand J Clin Lab Invest ; 83(4): 219-226, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37154842

RESUMO

An indispensable precondition for the determination of hemoglobin mass (Hbmass) and blood volume by CO rebreathing is complete mixing of CO in the blood. The aim of this study was to demonstrate the kinetics of CO in capillary and venous blood in different body positions and during moderate exercise. Six young subjects (4 male, 2 female) performed three 2-min CO rebreathing tests in seated (SEA) & supine (SUP) positions as well as during moderate exercise (EX) on a bicycle ergometer. Before, during, and until 15 min after CO rebreathing cubital venous and capillary blood samples were collected simultaneously and COHb% was determined. COHb% kinetics were significantly slower in SEA than in SUP or EX. Identical COHb% in capillary and venous blood were reached in SEA after 5.0 ± 2.3 min, in SUP after 3.2 ± 1.3 min and in EX after 1.9 ± 1.2 min (EX vs. SEA p < .01, SUP vs. SEA p < .05). After 7th min, Hbmass did not differ between the resting positions (capillary: SEA 766 ± 217 g, SUP 761 ± 227 g; venous: SEA 759 ± 224 g, SUP 744 ± 207 g). Under exercise, however, a higher Hbmass (p < .05) was determined (capillary: 823 ± 221 g, venous: 804 ± 226 g). In blood, the CO mixing time in the supine position is significantly shorter than in the seated position. By the 6th minute complete mixing is achieved in either position giving similar Hbmass determinations. CO-rebreathing under exercise conditions, however, leads to ∼7% higher Hbmass values.


Assuntos
Monóxido de Carbono , Hemoglobinas , Humanos , Masculino , Feminino , Cinética , Carboxihemoglobina , Postura
3.
Entropy (Basel) ; 25(11)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37998212

RESUMO

In George Wald's Nobel Prize acceptance speech for "discoveries concerning the primary physiological and chemical visual processes in the eye", he noted that events after the activation of rhodopsin are too slow to explain visual reception. Photoreceptor membrane phosphoglycerides contain near-saturation amounts of the omega-3 fatty acid docosahexaenoic acid (DHA). The visual response to a photon is a retinal cis-trans isomerization. The trans-state is lower in energy; hence, a quantum of energy is released equivalent to the sum of the photon and cis-trans difference. We hypothesize that DHA traps this energy, and the resulting hyperpolarization extracts the energized electron, which depolarizes the membrane and carries a function of the photon's energy (wavelength) to the brain. There, it contributes to the creation of the vivid images of our world that we see in our consciousness. This proposed revision to the visual process provides an explanation for these previously unresolved issues around the speed of information transfer and the purity of conservation of a photon's wavelength and supports observations of the unique and indispensable role of DHA in the visual process.

4.
Exp Physiol ; 106(7): 1470-1481, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33945170

RESUMO

NEW FINDINGS: What is the central question of this study? To what extent does testosterone influence haemoglobin formation during male puberty? What is the main finding and its importance? In boys, testosterone might be responsible for about 65% of the increase in haemoglobin mass during puberty. The underlying mechanisms are assumed to be twofold: (i) indirectly, mediated by the increase in lean body mass, and (ii) directly by immediate testosterone effects on erythropoiesis. Thereby, an increase in testosterone of 1 ng/ml is associated with an increase in haemoglobin mass of ∼65 g. These processes are likely to determine endurance performance in adulthood. ABSTRACT: The amount of haemoglobin during puberty is related to endurance performance in adulthood. During male puberty, testosterone stimulates erythropoiesis and could therefore be used as a marker for later endurance performance. This cross-sectional study aimed to determine the relationship between serum testosterone concentration and haemoglobin mass (Hbmass) in both male and female children and adolescents and to evaluate the possible influences of altitude and training. Three-hundred and thirteen differentially trained boys and girls aged from 9 to 18 years and living at altitudes of 1000 and 2600 m above sea level entered the study. The stage of sexual maturation was determined according to the classification of Tanner. Testosterone was measured by ELISA. Hbmass was determined by CO-rebreathing. Haemoglobin concentration did not change during maturation in girls and was 11% higher during puberty in boys, while Hbmass was elevated by 33% in Tanner stage V compared to stage II in girls (498 ± 77 vs. 373 ± 88 g) and by 95% in boys (832 ± 143 vs. 428 ± 95 g). This difference can most likely be attributed to indirect testosterone influences through an increase in lean body mass (LBM) and to direct testosterone effects on erythropoiesis, which increase the Hbmass by ∼65 g per 1 ng/ml. Altitude and training statuses were not associated with testosterone, but with an increase in Hbmass (altitude by 1.1 g/kg LBM, training by 0.8 g/kg LBM). Changes in Hbmass are closely related to testosterone levels during male puberty. Further studies will show whether testosterone and Hbmass during childhood and adolescence can be used as diagnostic tools for endurance talents.


Assuntos
Eritropoese , Testosterona , Adolescente , Adulto , Composição Corporal , Criança , Estudos Transversais , Feminino , Humanos , Masculino , Puberdade
5.
Exp Physiol ; 106(2): 567-575, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33369791

RESUMO

NEW FINDINGS: What is the central question of this study? Is it possible to modify the CO-rebreathing method to acquire reliable measurements of haemoglobin mass in ventilated patients? What is the main finding and its importance? A 'single breath' of CO with a subsequent 30 s breath hold provides almost as exact a measure of haemoglobin mass as the established optimized CO-rebreathing method when applied to healthy subjects. The modified method has now to be checked in ventilated patients before it can be used to quantify the contributions of blood loss and of dilution to the severity of anaemia. ABSTRACT: Anaemia is defined by the concentration of haemoglobin (Hb). However, this value is dependent upon both the total circulating haemoglobin mass (tHb-mass) and the plasma volume (PV) - neither of which is routinely measured. Carbon monoxide (CO)-rebreathing methods have been successfully used to determine both PV and tHb-mass in various populations. However, these methods are not yet suitable for ventilated patients. This study aimed to modify the CO-rebreathing procedure such that a single inhalation of a CO bolus would enable its use in ventilated patients. Eleven healthy volunteers performed four CO-rebreathing tests in a randomized order, inhaling an identical CO volume. In two tests, CO was rebreathed for 2 min (optimized CO rebreathing; oCOR), and in the other two tests, a single inhalation of a CO bolus was conducted with a subsequent breath hold of 15 s (Procnew 15s) or 30 s (Procnew 30s). Subsequently, the CO volume in the exhaled air was continuously determined for 20 min. The amount of CO exhaled after 7 and 20 min was respectively 3.1 ± 0.3 and 5.9 ± 1.1 ml for oCOR, 8.7 ± 3.6 and 12.0 ± 4.4 ml for Procnew 15s and 5.1 ± 2.0 and 8.4 ±2.6 ml for Procnew 30s. tHb-mass was 843 ± 293 g determined by oCOR, 821 ± 288 g determined by Procnew 15s (difference: P < 0.05) and 849 ± 311 g determined by Procnew 30s. Bland-Altman plots demonstrated slightly lower tHb-mass values for Procnew 15s compared with oCOR (-21.8 ± 15.3 g) and similar values for Procnew 30s. In healthy volunteers, a single inhalation of a CO bolus, preferably followed by a 30 s breath hold, can be used to determine tHb-mass. These results must now be validated for ventilated patients.


Assuntos
Monóxido de Carbono/análise , Adulto , Testes Respiratórios , Estudos de Viabilidade , Feminino , Hemoglobinas , Humanos , Masculino , Pessoa de Meia-Idade , Volume Plasmático , Adulto Jovem
7.
Molecules ; 23(12)2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30545062

RESUMO

Background: Gradient temperature Raman spectroscopy (GTRS) applies the continuous temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a new means for rapid high throughput material identification and quality control. Methods: Using 20 Mb three-dimensional data arrays with 0.2 °C increments and first/second derivatives allows complete assignment of solid, liquid and transition state vibrational modes. The entire set or any subset of the any of the contour plots, first derivatives or second derivatives can be utilized to create a graphical standard to quickly authenticate a given source. In addition, a temperature range can be specified that maximizes information content. Results: We compared GTRS and DSC data for five commercial fish oils that are excellent sources of docosahexaenoic acid (DHA; 22:6n-3) and eicosapentaenoic acid (EPA; 20:5n-3). Each product has a unique, distinctive response to the thermal gradient, which graphically and spectroscopically differentiates them. We also present detailed Raman data and full vibrational mode assignments for EPA and DHA. Conclusion: Complex lipids with a variety of fatty acids and isomers have three dimensional structures based mainly on how structurally similar sites pack. Any localized non-uniformity in packing results in discrete "fingerprint" molecular sites due to increased elasticity and decreased torsion.


Assuntos
Óleos de Peixe , Animais , Varredura Diferencial de Calorimetria , Ácidos Docosa-Hexaenoicos/análise , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/análise , Ácidos Graxos Ômega-3/análise , Óleos de Peixe/análise , Óleos de Peixe/química , Ensaios de Triagem em Larga Escala , Análise Espectral Raman
8.
Sensors (Basel) ; 17(3)2017 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-28335453

RESUMO

Non-destructive subsurface detection of encapsulated, coated, or seal-packaged foods and pharmaceuticals can help prevent distribution and consumption of counterfeit or hazardous products. This study used a Spatially Offset Raman Spectroscopy (SORS) method to detect and identify urea, ibuprofen, and acetaminophen powders contained within one or more (up to eight) layers of gelatin capsules to demonstrate subsurface chemical detection and identification. A 785-nm point-scan Raman spectroscopy system was used to acquire spatially offset Raman spectra for an offset range of 0 to 10 mm from the surfaces of 24 encapsulated samples, using a step size of 0.1 mm to obtain 101 spectral measurements per sample. As the offset distance was increased, the spectral contribution from the subsurface powder gradually outweighed that of the surface capsule layers, allowing for detection of the encapsulated powders. Containing mixed contributions from the powder and capsule, the SORS spectra for each sample were resolved into pure component spectra using self-modeling mixture analysis (SMA) and the corresponding components were identified using spectral information divergence values. As demonstrated here for detecting chemicals contained inside thick capsule layers, this SORS measurement technique coupled with SMA has the potential to be a reliable non-destructive method for subsurface inspection and authentication of foods, health supplements, and pharmaceutical products that are prepared or packaged with semi-transparent materials.


Assuntos
Pós , Cápsulas , Gelatina , Análise Espectral Raman
9.
Exp Physiol ; 101(5): 628-40, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26914389

RESUMO

NEW FINDINGS: What is the central question of this study? Is haemoglobin mass (Hbmass) decreased following 4 days of head-down tilt bed rest (HDTBR), and does increased red blood cell (RBC) destruction mediate this adaptation? What is the main finding and its importance? Haemoglobin mass was increased immediately following HDTBR, before decreasing below baseline 5 days after return to normal living conditions. The transient increase in Hbmass might be the result of decreased RBC destruction, but it is also possible that spleen contraction after HDTBR contributed to this adaptation. Our data suggest that the decreased Hbmass 5 days following HDTBR resulted from decreased RBC production, not increased RBC destruction. Rapid decreases in haemoglobin mass (Hbmass) have been reported in healthy humans following spaceflight and descent from high altitude. It has been proposed that a selective increase in the destruction of young red blood cells (RBCs) mediates these decreases, but conclusive evidence demonstrating neocytolysis in humans is lacking. Based on the proposed triggers and time course of adaptation during spaceflight, we hypothesized that Hbmass would be reduced after 4 days of -6 deg head-down tilt bed rest (HDTBR) and that this would be associated with evidence for increased RBC destruction. We assessed Hbmass in seven healthy, recreationally active men before (PRE), 5 h after (POST) and 5 days after (POST5) 4 days of HDTBR. The concentration of erythropoietin decreased from 7.1 ± 1.8 mIU ml(-1) at PRE to 5.2 ± 2.8 mIU ml(-1) at POST (mean ± SD; P = 0.028). Contrary to our hypothesis, Hbmass was increased from 817 ± 135 g at PRE to 849 ± 141 g at POST (P = 0.014) before decreasing below PRE to 789 ± 139 g at POST5 (P = 0.027). From PRE to POST, the concentration of haptoglobin increased from 0.54 ± 0.32 to 0.68 ± 0.28 g l(-1) (P = 0.013) and the concentration of bilirubin decreased from 0.50 ± 0.24 to 0.32 ± 0.11 mg dl(-1) (P = 0.054), suggesting that decreased RBC destruction might have contributed to the increased Hbmass. However, it is possible that spleen contraction following HDTBR also played a role in the increase in Hbmass at POST, but as the transient increase in Hbmass was unexpected, we did not collect data that would provide direct evidence for or against spleen contraction. From PRE to POST5, the concentration of soluble transferrin receptor decreased from 20.7 ± 3.9 to 17.1 ± 3.3 nmol l(-1) (P = 0.018) but the concentrations of ferritin, haptoglobin and bilirubin were not significantly altered, suggesting that the decrease in Hbmass was mediated by decreased RBC production rather than increased RBC destruction. Peak oxygen uptake decreased by 0.31 ± 0.16 l min(-1) from PRE to POST (P = 2 × 10(-4) ) but was not significantly altered at POST5 compared with PRE. Overall, these findings indicate that 4 days of HDTBR does not increase RBC destruction and that re-examination of the time course and mechanisms of Hbmass alterations following short-term spaceflight and simulated microgravity is warranted.


Assuntos
Decúbito Inclinado com Rebaixamento da Cabeça/fisiologia , Hemoglobinas/metabolismo , Aclimatação/fisiologia , Adaptação Fisiológica/fisiologia , Adolescente , Adulto , Repouso em Cama/métodos , Bilirrubina/metabolismo , Eritrócitos/metabolismo , Humanos , Masculino , Receptores da Transferrina/metabolismo , Simulação de Ausência de Peso/métodos , Adulto Jovem
10.
J Sports Sci Med ; 14(1): 98-102, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25729296

RESUMO

To compare relative match intensities of sea-level versus high-altitude native soccer players during a 2-week camp at 3600 m, data from 7 sea-level (Australian U17 National team, AUS) and 6 high-altitude (a Bolivian U18 team, BOL) native soccer players were analysed. Two matches were played at sea-level and three at 3600 m on Days 1, 6 and 13. The Yo-Yo Intermittent recovery test (vYo-YoIR1) was performed at sea-level, and on Days 3 and 10. Match activity profiles were measured via 10-Hz GPS. Distance covered >14.4 km.h(-1) (D>14.4 km·h(-1)) and >80% of vYo-YoIR1 (D>80%vYo-YoIR1) were examined. Upon arrival at altitude, there was a greater decrement in vYo-YoIR1 (Cohen's d +1.0, 90%CL ± 0.8) and D>14.4 km·h(-1) (+0.5 ± 0.8) in AUS. D>14.4 km.h(-1) was similarly reduced relative to vYo-YoIR1 in both groups, so that D>80%vYo-YoIR1 remained similarly unchanged (-0.1 ± 0.8). Throughout the altitude sojourn, vYo-YoIR1 and D>14.4 km·h(-1) increased in parallel in AUS, so that D>80%vYo-YoIR1 remained stable in AUS (+6.0%/match, 90%CL ± 6.7); conversely D>80%vYo-YoIR1 decreased largely in BOL (-12.2%/match ± 6.2). In sea-level natives competing at high-altitude, changes in match running performance likely follow those in high-intensity running performance. Bolivian data confirm that increases in 'fitness' do not necessarily translate into greater match running performance, but rather in reduced relative exercise intensity. Key pointsWhen playing at high-altitude, players may alter their activities during matches in relation to their transient maximal physical capacities, possibly to maintain a 'tolerable' relative exercise intensity.While there is no doubt that running performance per se in not the main determinant of match outcomes (Carling, 2013), fitness levels influence relative match intensity (Buchheit et al., 2012, Mendez-Villanueva et al., 2013), which in-turn may impact on decision making and skill performance (Rampinini et al., 2008).In the context of high-altitude competitions, it is therefore recommended to arrive early enough (i.e., ~2 weeks) to allow (at least partial) acclimatisation, and in turn, allow sea-level native players to regulate their running activities in relation to both actual game demands and relative match intensity.

11.
Clin Case Rep ; 12(6): e9071, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38863867

RESUMO

In chronic heart failure, dilutional anemia and hypervolemia may occur due to plasma volume expansion, the latter sometimes exacerbated by an increase in red cell volume. Diagnosis and a therapeutic strategy require determination of vascular volumes.

12.
Drug Test Anal ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747126

RESUMO

Accurate determination of carboxy-hemoglobin (COHb%) is essential for the assessment of hemoglobin mass (Hbmass) by CO-rebreathing. To analyze blood samples for a certain period of time after blood collection, it is necessary to know the stability of the COHb% during storage. The aim of the study was to determine the stability of COHb% at different storage temperatures over a period of up to 3 months. Twenty-five milliliters of cubital venous blood was taken from five volunteers (three females and two males) before and after inhalation of 0.8/1.0 mL/kg carbon monoxide and stored at +20°C and +4°C for 6 days and at -70°C for 12 weeks. Within the first 6 days, the blood was analyzed daily, then weekly for 12 weeks. Additionally, Hbmass was determined in 13 endurance athletes immediately after blood collection and after storage for 3 days (eight cyclists) and 7 days (five swimmers) at +20°C or +4°C. COHb% before and after CO inhalation was 1.56 ± 0.48 and 5.86 ± 1.12%, respectively, and remained unchanged over 6 days, with no difference between storage at different temperatures. The standard deviation (STD) over time was between 0.07% and 0.12%. Similarly, storage at -70°C for 12 weeks did not change COHb%, whereas STD was 0.07%. Hbmass determined immediately and, after 3 or 7 days of storage, differed by 10 ± 7 g and 15 ± 11 g corresponding to a typical error of 0.8% and 1.1%. Blood storage at +20°C and +4°C for 6 days and at -70°C for 12 weeks does not affect COHb% and has, therefore, no influence on Hbmass assessment.

13.
Br J Sports Med ; 47 Suppl 1: i26-30, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24282203

RESUMO

BACKGROUND: Endurance athletes have been using altitude training for decades to improve near sea-level performance. The predominant mechanism is thought to be accelerated erythropoiesis increasing haemoglobin mass (Hb(mass)) resulting in a greater maximal oxygen uptake (VO2(max)). Not all studies have shown a proportionate increase in VO2(max) as a result of increased Hb(mass). The aim of this study was to determine the relationship between the two parameters in a large group of endurance athletes after altitude training. METHODS: 145 elite endurance athletes (94 male and 51 female) who participated in various altitude studies as altitude or control participants were used for the analysis. Participants performed Hb(mass) and VO2(max) testing before and after intervention. RESULTS: For the pooled data, the correlation between per cent change in Hb(mass) and per cent change in VO2(max) was significant (p<0.0001, r(2)=0.15), with a slope (95% CI) of 0.48 (0.30 to 0.67) intercept free to vary and 0.62 (0.46 to 0.77) when constrained through the origin. When separated, the correlations were significant for the altitude and control groups, with the correlation being stronger for the altitude group (slope of 0.57 to 0.72). CONCLUSIONS: With high statistical power, we conclude that altitude training of endurance athletes will result in an increase in VO2(max) of more than half the magnitude of the increase in Hb(mass), which supports the use of altitude training by athletes. But race performance is not perfectly related to relative VO2(max), and other non-haematological factors altered from altitude training, such as running economy and lactate threshold, may also be beneficial to performance.


Assuntos
Altitude , Desempenho Atlético/fisiologia , Hemoglobinas/metabolismo , Hipóxia/fisiopatologia , Ciclismo/fisiologia , Estudos de Casos e Controles , Tolerância ao Exercício/fisiologia , Feminino , Humanos , Hipóxia/metabolismo , Masculino , Consumo de Oxigênio/fisiologia , Esforço Físico/fisiologia , Corrida/fisiologia , Natação/fisiologia , Caminhada/fisiologia
14.
Br J Sports Med ; 47 Suppl 1: i124-7, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24282199

RESUMO

OBJECTIVES: To examine the time course of changes in wellness and health status markers before and after episodes of sickness in young soccer players during a high-altitude training camp (La Paz, 3600 m). METHODS: Wellness and fatigue were assessed daily on awakening using specifically-designed questionnaires and resting measures of heart rate and heart rate variability. The rating of perceived exertion and heart rate responses to a submaximal run (9 km/h) were also collected during each training session. Players who missed the morning screening for at least two consecutive days were considered as sick. RESULTS: Four players met the inclusion criteria. With the exception of submaximal exercise heart rate, which showed an almost certain and large increase before the day of sickness (4%; 90% confidence interval 3 to 6), there was no clear change in any of the other psychometric or physiological variables. There was a very likely moderate increase (79%, 22 to 64) in self-reported training load the day before the heart rate increase in sick players (4 of the 4 players, 100%). In contrast, training load was likely and slightly decreased (-24%, -78 to -11) in players who also showed an increased heart rate but remained healthy. CONCLUSIONS: A >4% increased heart rate during submaximal exercise in response to a moderate increase in perceived training load the previous day may be an indicator of sickness the next day. All other variables, that is, resting heart rate, heart rate variability and psychometric questionnaires may be less powerful at predicting sickness.


Assuntos
Doença Aguda/terapia , Altitude , Futebol/fisiologia , Adolescente , Austrália/etnologia , Bolívia/etnologia , Diagnóstico Precoce , Exercício Físico/fisiologia , Fadiga/diagnóstico , Fadiga/etnologia , Nível de Saúde , Frequência Cardíaca/fisiologia , Humanos , Masculino , Psicometria
15.
Br J Sports Med ; 47 Suppl 1: i93-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24282216

RESUMO

OBJECTIVES: The optimal strategy for soccer teams playing at altitude is not known, that is, 'fly-in, fly-out' versus short-term acclimatisation. Here, we document changes in blood gas and vascular volumes of sea-level (Australian, n=20) and altitude (Bolivian, n=19) native soccer players at 3600 m. METHODS: Haemoglobin-oxygen saturation (Hb-sO2), arterial oxygen content (CaO2), haemoglobin mass (Hbmass), blood volume (BV) and blood gas concentrations were measured before descent (Bolivians only), together with aerobic fitness (via Yo-YoIR1), near sea-level, after ascent and during 13 days at 3600 m. RESULTS: At baseline, haemoglobin concentration [Hb] and Hbmass were higher in Bolivians (mean ± SD; 18.2 ± 1.0 g/dL, 12.8 ± 0.8 g/kg) than Australians (15.0 ± 0.9 g/dL, 11.6 ± 0.7 g/kg; both p ≤ 0.001). Near sea-level, [Hb] of Bolivians decreased to 16.6 ± 0.9 g/dL, but normalised upon return to 3600 m; Hbmass was constant regardless of altitude. In Australians, [Hb] increased after 12 days at 3600 m to 17.3 ± 1.0 g/dL; Hbmass increased by 3.0 ± 2.7% (p ≤ 0.01). BV decreased in both teams at altitude by ∼400 mL. Arterial partial pressure for oxygen (PaO2), Hb-sO2 and CaO2 of both teams decreased within 2 h of arrival at 3600 m (p ≤ 0.001) but increased over the following days, with CaO2 overcompensated in Australians (+1.7 ± 1.2 mL/100 mL; p ≤ 0.001). Yo-YoIR1 was lower on the 3rd versus 10th day at altitude and was significantly related to CaO2. CONCLUSIONS: The marked drop in PaO2 and CaO2 observed after ascent does not support the 'fly-in, fly-out' approach for soccer teams to play immediately after arrival at altitude. Although short-term acclimatisation was sufficient for Australians to stabilise their CaO2 (mostly due to loss of plasma volume), 12 days appears insufficient to reach chronic levels of adaption.


Assuntos
Altitude , Hemoglobinas/metabolismo , Futebol/fisiologia , Aclimatação/fisiologia , Adolescente , Austrália/etnologia , Gasometria , Bolívia/etnologia , Humanos , Masculino , Oxigênio/sangue , Oxiemoglobinas/metabolismo , Pressão Parcial , Aptidão Física/fisiologia
16.
Br J Sports Med ; 47 Suppl 1: i100-6, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24282195

RESUMO

OBJECTIVES: To examine the time course of wellness, fatigue and performance during an altitude training camp (La Paz, 3600 m) in two groups of either sea-level (Australian) or altitude (Bolivian) native young soccer players. METHODS: Wellness and fatigue were assessed using questionnaires and resting heart rate (HR) and HR variability. Physical performance was assessed using HR responses to a submaximal run, a Yo-Yo Intermittent recovery test level 1 (Yo-YoIR1) and a 20 m sprint. Most measures were performed daily, with the exception of Yo-YoIR1 and 20 m sprints, which were performed near sea level and on days 3 and 10 at altitude. RESULTS: Compared with near sea level, Australians had moderate-to-large impairments in wellness and Yo-YoIR1 relative to the Bolivians on arrival at altitude. The acclimatisation of most measures to altitude was substantially slower in Australians than Bolivians, with only Bolivians reaching near sea-level baseline high-intensity running by the end of the camp. Both teams had moderately impaired 20 m sprinting at the end of the camp. Exercise HR had large associations (r>0.5-0.7) with changes in Yo-YoIR1 in both groups. CONCLUSIONS: Despite partial physiological and perceptual acclimatisation, 2 weeks is insufficient for restoration of physical performance in young sea-level native soccer players. Because of the possible decrement in 20 m sprint time, a greater emphasis on speed training may be required during and after altitude training. The specific time course of restoration for each variable suggests that they measure different aspects of acclimatisation to 3600 m; they should therefore be used in combination to assess adaptation to altitude.


Assuntos
Altitude , Desempenho Atlético/fisiologia , Fadiga/fisiopatologia , Futebol/fisiologia , Aclimatação/fisiologia , Adolescente , Austrália/etnologia , Índice de Massa Corporal , Bolívia/etnologia , Nível de Saúde , Frequência Cardíaca/fisiologia , Humanos , Masculino , Oxigênio/sangue , Pressão Parcial
17.
Br J Sports Med ; 47 Suppl 1: i107-13, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24282196

RESUMO

OBJECTIVES: We investigated the effect of high altitude on the match activity profile of elite youth high altitude and sea level residents. METHODS: Twenty Sea Level (Australian) and 19 Altitude-resident (Bolivian) soccer players played five games, two near sea level (430 m) and three in La Paz (3600 m). Match activity profile was quantified via global positioning system with the peak 5 min period for distance ((D5(peak)) and high velocity running (>4.17 m/s, HIVR5(peak)); as well as the 5 min period immediately subsequent to the peak for both distance (D5(sub)) and high-velocity running (HIVR5(sub)) identified using a rolling 5 min epoch. The games at 3600 m were compared with the average of the two near sea-level games. RESULTS: The total distance per minute was reduced by a small magnitude in the first match at altitude in both teams, without any change in low-velocity running. There were variable changes in HiVR, D5(peak) and HiVR5(peak) from match to match for each team. There were within-team reductions in D5(peak) in each game at altitude compared with those at near sea level, and this reduction was greater by a small magnitude in Australians than Bolivians in game 4. The effect of altitude on HiVR5(peak) was moderately lower in Australians compared with Bolivians in game 3. There was no clear difference in the effect of altitude on maximal accelerations between teams. CONCLUSIONS: High altitude reduces the distance covered by elite youth soccer players during matches. Neither 13 days of acclimatisation nor lifelong residence at high altitude protects against detrimental effects of altitude on match activity profile.


Assuntos
Aclimatação/fisiologia , Altitude , Desempenho Atlético/fisiologia , Futebol/fisiologia , Aceleração , Adolescente , Austrália/etnologia , Bolívia/etnologia , Humanos , Masculino , Corrida/fisiologia
18.
Br J Sports Med ; 47 Suppl 1: i114-20, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24282197

RESUMO

BACKGROUND: Altitude exposure causes acute sleep disruption in non-athletes, but little is known about its effects in elite athletes. The aim of this study was to examine the effects of altitude on two groups of elite athletes, that is, sea-level natives and high-altitude natives. METHODS: Sea-level natives were members of the Australian under-17 soccer team (n=14). High-altitude natives were members of a Bolivian under-20 club team (n=12). Teams participated in an 18-day (19 nights) training camp in Bolivia, with 6 nights at near sea level in Santa Cruz (430 m) and 13 nights at high altitude in La Paz (3600 m). Sleep was assessed on every day/night using activity monitors. RESULTS: The Australians' sleep was shorter, and of poorer quality, on the first night at altitude compared with sea level. Sleep quality returned to normal by the end of the first week at altitude, but sleep quantity had still not stabilised at its normal level after 2 weeks. The quantity and quality of sleep obtained by the Bolivians was similar, or greater, on all nights at altitude compared with sea level. The Australians tended to obtain more sleep than the Bolivians at sea level and altitude, but the quality of the Bolivians' sleep tended to be better than that of the Australians at altitude. CONCLUSIONS: Exposure to high altitude causes acute and chronic disruption to the sleep of elite athletes who are sea-level natives, but it does not affect the sleep of elite athletes who are high-altitude natives.


Assuntos
Altitude , Sono/fisiologia , Futebol/fisiologia , Adolescente , Austrália/etnologia , Bolívia/etnologia , Humanos , Masculino , Viagem
19.
Br J Sports Med ; 47 Suppl 1: i31-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24282204

RESUMO

OBJECTIVE: To characterise the time course of changes in haemoglobin mass (Hbmass) in response to altitude exposure. METHODS: This meta-analysis uses raw data from 17 studies that used carbon monoxide rebreathing to determine Hbmass prealtitude, during altitude and postaltitude. Seven studies were classic altitude training, eight were live high train low (LHTL) and two mixed classic and LHTL. Separate linear-mixed models were fitted to the data from the 17 studies and the resultant estimates of the effects of altitude used in a random effects meta-analysis to obtain an overall estimate of the effect of altitude, with separate analyses during altitude and postaltitude. In addition, within-subject differences from the prealtitude phase for altitude participant and all the data on control participants were used to estimate the analytical SD. The 'true' between-subject response to altitude was estimated from the within-subject differences on altitude participants, between the prealtitude and during-altitude phases, together with the estimated analytical SD. RESULTS: During-altitude Hbmass was estimated to increase by ∼1.1%/100 h for LHTL and classic altitude. Postaltitude Hbmass was estimated to be 3.3% higher than prealtitude values for up to 20 days. The within-subject SD was constant at ∼2% for up to 7 days between observations, indicative of analytical error. A 95% prediction interval for the 'true' response of an athlete exposed to 300 h of altitude was estimated to be 1.1-6%. CONCLUSIONS: Camps as short as 2 weeks of classic and LHTL altitude will quite likely increase Hbmass and most athletes can expect benefit.


Assuntos
Altitude , Monóxido de Carbono/administração & dosagem , Hemoglobinas/metabolismo , Aclimatação/fisiologia , Desempenho Atlético/fisiologia , Carboxihemoglobina/metabolismo , Humanos , Hipóxia/fisiopatologia , Respiração
20.
Br J Sports Med ; 47 Suppl 1: i80-5, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24282214

RESUMO

BACKGROUND: We describe here the 3-year process underpinning a multinational collaboration to investigate soccer played at high altitude--La Paz, Bolivia (3600 m). There were two main aims: first, to quantify the extent to which running performance would be altered at 3600 m compared with near sea level; and second, to characterise the time course of acclimatisation of running performance and underlying physiology to training and playing at 3600 m. In addition, this project was able to measure the physiological changes and the effect on running performance of altitude-adapted soccer players from 3600 m playing at low altitude. METHODS: A U20 Bolivian team ('The Strongest' from La Paz, n=19) played a series of five games against a U17 team from sea level in Australia (The Joeys, n=20). 2 games were played near sea level (Santa Cruz 430 m) over 5 days and then three games were played in La Paz over the next 12 days. Measures were (1) game and training running performance--including global positioning system (GPS) data on distance travelled and velocity of movement; (2) blood--including haemoglobin mass, blood volume, blood gases and acid-base status; (3) acclimatisation--including resting heart rate variability, perceived altitude sickness, as well as heart rate and perceived exertion responses to a submaximal running test; and (4) sleep patterns. CONCLUSIONS: Pivotal to the success of the project were the strong professional networks of the collaborators, with most exceeding 10 years, the links of several of the researchers to soccer federations, as well as the interest and support of the two head coaches.


Assuntos
Altitude , Desempenho Atlético/fisiologia , Corrida/fisiologia , Futebol/fisiologia , Aclimatação/fisiologia , Equilíbrio Ácido-Base/fisiologia , Adolescente , Austrália/etnologia , Volume Sanguíneo/fisiologia , Bolívia/etnologia , Hemoglobinas/metabolismo , Humanos , Masculino , Sono/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA