RESUMO
BACKGROUND: The objective of this study was to investigate the utility of neutrophil gelatinase-associated lipocalin (NGAL) and calprotectin (CPT) to predict long-term graft survival in stable kidney transplant recipients (KTR). METHODS: A total of 709 stable outpatient KTR were enrolled >2 months post-transplant. The utility of plasma and urinary NGAL (pNGAL, uNGAL) and plasma and urinary CPT at enrollment to predict death-censored graft loss was evaluated during a 58-month follow-up. RESULTS: Among biomarkers, pNGAL showed the best predictive ability for graft loss and was the only biomarker with an area under the curve (AUC) > 0.7 for graft loss within 5 years. Patients with graft loss within 5 years (n = 49) had a median pNGAL of 304 [interquartile range (IQR) 235-358] versus 182 (IQR 128-246) ng/mL with surviving grafts (P < .001). Time-dependent receiver operating characteristic analyses at 58 months indicated an AUC for pNGAL of 0.795, serum creatinine-based Chronic Kidney Disease Epidemiology Collaboration estimated glomerular filtration rate (eGFR) had an AUC of 0.866. pNGAL added to a model based on conventional risk factors for graft loss with death as competing risk (age, transplant age, presence of donor-specific antibodies, presence of proteinuria, history of delayed graft function) had a strong independent association with graft loss {subdistribution hazard ratio (sHR) for binary log-transformed pNGAL [log2(pNGAL)] 3.4, 95% confidence interval (CI) 2.24-5.15, P < .0001}. This association was substantially attenuated when eGFR was added to the model [sHR for log2(pNGAL) 1.63, 95% CI 0.92-2.88, P = .095]. Category-free net reclassification improvement of a risk model including log2(pNGAL) in addition to conventional risk factors and eGFR was 54.3% (95% CI 9.2%-99.3%) but C-statistic did not improve significantly. CONCLUSIONS: pNGAL was an independent predictor of renal allograft loss in stable KTR from one transplant center but did not show consistent added value when compared with baseline predictors including the conventional marker eGFR. Future studies in larger cohorts are warranted.
Assuntos
Transplante de Rim , Humanos , Proteínas de Fase Aguda , Aloenxertos , Biomarcadores , Lipocalina-2 , Lipocalinas , Proteínas Proto-OncogênicasRESUMO
BACKGROUND: Transcription factors regulate gene expression by binding to transcription factor binding sites (TFBSs). Most models for predicting TFBSs are based on position weight matrices (PWMs), which require a specific motif to be present in the DNA sequence and do not consider interdependencies of nucleotides. Novel approaches such as Transcription Factor Flexible Models or recurrent neural networks consequently provide higher accuracies. However, it is unclear whether such approaches can uncover novel non-canonical, hitherto unexpected TFBSs relevant to human transcriptional regulation. RESULTS: In this study, we trained a convolutional recurrent neural network with HT-SELEX data for GRHL1 binding and applied it to a set of GRHL1 binding sites obtained from ChIP-Seq experiments from human cells. We identified 46 non-canonical GRHL1 binding sites, which were not found by a conventional PWM approach. Unexpectedly, some of the newly predicted binding sequences lacked the CNNG core motif, so far considered obligatory for GRHL1 binding. Using isothermal titration calorimetry, we experimentally confirmed binding between the GRHL1-DNA binding domain and predicted GRHL1 binding sites, including a non-canonical GRHL1 binding site. Mutagenesis of individual nucleotides revealed a correlation between predicted binding strength and experimentally validated binding affinity across representative sequences. This correlation was neither observed with a PWM-based nor another deep learning approach. CONCLUSIONS: Our results show that convolutional recurrent neural networks may uncover unanticipated binding sites and facilitate quantitative transcription factor binding predictions.
Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Sítios de Ligação , Ligação Proteica , Redes Neurais de Computação , Nucleotídeos/metabolismo , Proteínas Repressoras/genéticaRESUMO
PURPOSE: Discrepancies exist between guideline recommendations and real-world practice of blood pressure (BP) measurements. The aim of this study was to assess, with a nationwide, questionnaire-based survey, the current practice of BP measurement and associated BP values in German medical practices. MATERIAL AND METHODS: A nationwide survey in German medical practices was performed in the period from 10 May 2021 to 15 August 2021. The questionnaire was divided into five sections. The current office BP (OBP) values as well as the current drug therapy were recorded. In addition, the implementation of office BP (OBP) and home BP monitoring (HBPM) was queried. For analysis, questionnaires were scanned and automatically digitised. RESULTS: A total of 7049 questionnaires were analysed, the majority of which came from general practitioners (66%) and internal medicine practices (34%). The average OBP (SD) was 140.0 (18)/82.7 (11) mmHg. 40.8% of treated patients had OBP in the controlled range, with monotherapy (34.7%) or dual combination therapy (38.2%) prescribed in most cases. OBP was taken from a single measurement in 66.3% of cases, and in 21.8% from 23 measurements. OBP was mostly measured after a rest period (87.1%) and in a separate room (80.4%). HBPM was performed in 62.3% of patients; however, in 24.9% of the participants HBP measurements were recorded once a week or less. CONCLUSION: In this nationwide survey in German medical practices, BP control remains at below 50%, while monotherapy is prescribed in around one third of patients. Moreover, office measurements and HBPM are often not performed according to current guideline recommendations.
What is the context?Elevated blood pressure (hypertension) is an important risk factor for diseases such as stroke or heart attack. However, sufficient drug therapy can significantly reduce the risk of complications such as a stroke. An adequate blood pressure measurement is the basis for diagnostics and successful therapy. In order to measure blood pressure as accurately as possible, recommendations for performing blood pressure measurements (at home as well as in the office) have been published by medical societies.Research suggests that blood pressure is not always measured according to these recommendations. However, there are no current studies for Germany.What is new?In this study, we analysed the results of a survey in which medical practices and pharmacies throughout Germany were asked about blood pressure measurement and blood pressure therapy. The key results of our study suggest that:⢠The blood pressure of many participants with known hypertension is not within the desired target range.⢠Office blood pressure measurements are often not performed as suggested by guidelines. This mainly affects time-consuming work steps such as repeating the measurement several times.⢠Home blood pressure is not recorded in a structured form, as suggested, but rather according to a random pattern by the patient. What is important?This study suggests that blood pressure control is not sufficient in the study participants. Furthermore, blood pressure measurement as an important tool for hypertension management is frequently not performed as proposed by guidelines.
Assuntos
Hipertensão , Humanos , Hipertensão/diagnóstico , Hipertensão/tratamento farmacológico , Pressão Sanguínea , Determinação da Pressão Arterial , Monitorização Ambulatorial da Pressão Arterial , Alemanha , Inquéritos e QuestionáriosRESUMO
Acute kidney injury (AKI) affects many hospitalized patients and is associated with increased morbidity and mortality even at milder and reversible stages. The current clinical definition relies on serum creatinine increases or decreased urinary output. However, both parameters are of limited use because of poor sensitivity, specificity, and timeliness. Furthermore, the complex pathophysiology and diverse etiologies underlying AKI confound these issues. Precise biomarkers for specific aspects of AKI are needed. Earlier AKI biomarkers were unsuccessful in addressing these needs because they either lacked sensitivity and specificity or failed to aid in guiding clinical management. The advent of single-cell transcriptomics technologies provides an unprecedented opportunity to analyze cells from urine, blood, or kidney biopsies to elucidate the detailed, cell-specific, molecular responses in AKI. These technologies uncover the cellular sources of traditional biomarkers, capture patient heterogeneity, define cell states associated with different AKI subtypes, and might eventually help to predict therapeutic response. We discuss how single-cell technologies might transform diagnostic approaches to AKI by moving from single biomarkers to cell-specific molecular signatures.
Assuntos
Injúria Renal Aguda , Transcriptoma , Humanos , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/genética , Creatinina , BiomarcadoresRESUMO
Acute kidney injury (AKI) is a major health issue, the outcome of which depends primarily on damage and reparative processes of tubular epithelial cells. Mechanisms underlying AKI remain incompletely understood, specific therapies are lacking and monitoring the course of AKI in clinical routine is confined to measuring urine output and plasma levels of filtration markers. Here we demonstrate feasibility and potential of a novel approach to assess the cellular and molecular dynamics of AKI by establishing a robust urine-to-single cell RNA sequencing (scRNAseq) pipeline for excreted kidney cells via flow cytometry sorting. We analyzed 42,608 single cell transcriptomes of 40 urine samples from 32 patients with AKI and compared our data with reference material from human AKI post-mortem biopsies and published mouse data. We demonstrate that tubular epithelial cells transcriptomes mirror kidney pathology and reflect distinct injury and repair processes, including oxidative stress, inflammation, and tissue rearrangement. We also describe an AKI-specific abundant urinary excretion of adaptive progenitor-like cells. Thus, single cell transcriptomics of kidney cells excreted in urine provides noninvasive, unprecedented insight into cellular processes underlying AKI, thereby opening novel opportunities for target identification, AKI sub-categorization, and monitoring of natural disease course and interventions.
Assuntos
Injúria Renal Aguda , Humanos , Camundongos , Animais , Injúria Renal Aguda/patologia , Rim/patologia , Biomarcadores/urina , Estresse Oxidativo , Células Epiteliais/patologiaRESUMO
BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilises the angiotensin-converting enzyme 2 (ACE2) transmembrane peptidase as cellular entry receptor. However, whether SARS-CoV-2 in the alveolar compartment is strictly ACE2-dependent and to what extent virus-induced tissue damage and/or direct immune activation determines early pathogenesis is still elusive. METHODS: Spectral microscopy, single-cell/-nucleus RNA sequencing or ACE2 "gain-of-function" experiments were applied to infected human lung explants and adult stem cell derived human lung organoids to correlate ACE2 and related host factors with SARS-CoV-2 tropism, propagation, virulence and immune activation compared to SARS-CoV, influenza and Middle East respiratory syndrome coronavirus (MERS-CoV). Coronavirus disease 2019 (COVID-19) autopsy material was used to validate ex vivo results. RESULTS: We provide evidence that alveolar ACE2 expression must be considered scarce, thereby limiting SARS-CoV-2 propagation and virus-induced tissue damage in the human alveolus. Instead, ex vivo infected human lungs and COVID-19 autopsy samples showed that alveolar macrophages were frequently positive for SARS-CoV-2. Single-cell/-nucleus transcriptomics further revealed nonproductive virus uptake and a related inflammatory and anti-viral activation, especially in "inflammatory alveolar macrophages", comparable to those induced by SARS-CoV and MERS-CoV, but different from NL63 or influenza virus infection. CONCLUSIONS: Collectively, our findings indicate that severe lung injury in COVID-19 probably results from a macrophage-triggered immune activation rather than direct viral damage of the alveolar compartment.
Assuntos
COVID-19 , Influenza Humana , Adulto , Humanos , Enzima de Conversão de Angiotensina 2 , Pulmão/patologia , Macrófagos Alveolares/metabolismo , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Tropismo ViralRESUMO
OBJECTIVE: Acute kidney injury (AKI) is a common complication after cardiac surgery (CS). Because a therapeutic regimen remains scarce, the early implementation of preventive strategies is crucial. The authors investigated risk factors and the typical clinical course of CS-associated AKI (CS-AKI) to derive strategies for perioperative clinical routines. DESIGN: Retrospective data analysis. SETTING: The data were collected from clinical routines in a maximum care university hospital. PARTICIPANTS: Patients. INTERVENTIONS: The authors retrospectively analyzed data from 538 patients who underwent CS. MEASUREMENTS AND MAIN RESULTS: The median age of the 466 patients included was 66.6 years; 65.7% were men. AKI occurred in 131 (28.1%) patients, mainly (89.0%) starting postoperatively within 72 hours p. Thirty-one (6.7%) patients showed Kidney Disease Improving Global Outcome AKI stage 3. AKI was significantly more frequent in patients with chronic kidney disease (p < 0.001), emergency admission (p < 0.001), heart failure (p < 0.001), and postoperative complications (p < 0.001). In a multivariate analysis, postoperative CS-AKI risk significantly decreased with each 1 or 10 mL/min preoperative glomerular filtration rate (GFR) (odds ratio, 0.962 and 0.677; 95% confidence interval, 0.947-0.977 and 0.577-0.793; p < 0.001 and p < 0.0001). Only in patients who developed Kidney Disease Improving Global Outcome AKI stage 3, an early postoperative trend to decreased GFR and increased creatinine levels was observed. CONCLUSIONS: Especially in patients with preexisting CKD and signs of CS-AKI occurring on the day of surgery, close monitoring of renal function should be performed for at least 72 hours after CS to detect an onset of AKI early and initiate renal protective strategies. Optimal preoperative fluid management might prevent postoperative AKI.
Assuntos
Injúria Renal Aguda , Procedimentos Cirúrgicos Cardíacos , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/epidemiologia , Injúria Renal Aguda/etiologia , Idoso , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Taxa de Filtração Glomerular , Humanos , Masculino , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Estudos Retrospectivos , Fatores de RiscoRESUMO
BACKGROUND: Single-cell transcriptomes from dissociated tissues provide insights into cell types and their gene expression and may harbor additional information on spatial position and the local microenvironment. The kidney's cells are embedded into a gradient of increasing tissue osmolality from the cortex to the medulla, which may alter their transcriptomes and provide cues for spatial reconstruction. METHODS: Single-cell or single-nuclei mRNA sequencing of dissociated mouse kidneys and of dissected cortex, outer, and inner medulla, to represent the corticomedullary axis, was performed. Computational approaches predicted the spatial ordering of cells along the corticomedullary axis and quantitated expression levels of osmo-responsive genes. In situ hybridization validated computational predictions of spatial gene-expression patterns. The strategy was used to compare single-cell transcriptomes from wild-type mice to those of mice with a collecting duct-specific knockout of the transcription factor grainyhead-like 2 (Grhl2CD-/-), which display reduced renal medullary osmolality. RESULTS: Single-cell transcriptomics from dissociated kidneys provided sufficient information to approximately reconstruct the spatial position of kidney tubule cells and to predict corticomedullary gene expression. Spatial gene expression in the kidney changes gradually and osmo-responsive genes follow the physiologic corticomedullary gradient of tissue osmolality. Single-nuclei transcriptomes from Grhl2CD-/- mice indicated a flattened expression gradient of osmo-responsive genes compared with control mice, consistent with their physiologic phenotype. CONCLUSIONS: Single-cell transcriptomics from dissociated kidneys facilitated the prediction of spatial gene expression along the corticomedullary axis and quantitation of osmotically regulated genes, allowing the prediction of a physiologic phenotype.
Assuntos
Córtex Renal/metabolismo , Córtex Renal/patologia , Medula Renal/metabolismo , Medula Renal/patologia , Transcriptoma , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica , Hibridização In Situ , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Concentração OsmolarRESUMO
BACKGROUND: An underlying monogenic cause of early-onset chronic kidney disease (CKD) can be detected in â¼20% of individuals. For many etiologies of CKD manifesting before 25 years of age, >200 monogenic causative genes have been identified to date, leading to the elucidation of mechanisms of renal pathogenesis. METHODS: In 51 families with echogenic kidneys and CKD, we performed whole-exome sequencing to identify novel monogenic causes of CKD. RESULTS: We discovered a homozygous truncating mutation in the transcription factor gene transcription factor CP2-like 1 (TFCP2L1) in an Arabic patient of consanguineous descent. The patient developed CKD by the age of 2 months and had episodes of severe hypochloremic, hyponatremic and hypokalemic alkalosis, seizures, developmental delay and hypotonia together with cataracts. We found that TFCP2L1 was localized throughout kidney development particularly in the distal nephron. Interestingly, TFCP2L1 induced the growth and development of renal tubules from rat mesenchymal cells. Conversely, the deletion of TFCP2L1 in mice was previously shown to lead to reduced expression of renal cell markers including ion transporters and cell identity proteins expressed in different segments of the distal nephron. TFCP2L1 localized to the nucleus in HEK293T cells only upon coexpression with its paralog upstream-binding protein 1 (UBP1). A TFCP2L1 mutant complementary DNA (cDNA) clone that represented the patient's mutation failed to form homo- and heterodimers with UBP1, an essential step for its transcriptional activity. CONCLUSION: Here, we identified a loss-of-function TFCP2L1 mutation as a potential novel cause of CKD in childhood accompanied by a salt-losing tubulopathy.
Assuntos
Transição Epitelial-Mesenquimal , Nefropatias/etiologia , Mutação , Proteínas Repressoras/genética , Animais , Criança , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Células HEK293 , Humanos , Nefropatias/metabolismo , Nefropatias/patologia , Camundongos , Camundongos Knockout , Ratos , Proteínas Repressoras/metabolismo , Análise de Célula Única , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequenciamento do ExomaRESUMO
BACKGROUND: Neutrophil gelatinase-associated lipocalin (NGAL) is a diagnostic marker of intrinsic kidney injury produced by damaged renal cells and by neutrophils. ANCA-associated vasculitis features necrotizing crescentic GN (NCGN), and ANCA-activated neutrophils contribute to NCGN. Whether NGAL plays a mechanistic role in ANCA-associated vasculitis is unknown. METHODS: We measured NGAL in patients with ANCA-associated vasculitis and mice with anti-myeloperoxidase (anti-MPO) antibody-induced NCGN. We compared kidney histology, neutrophil functions, T cell proliferation and polarization, renal infiltrating cells, and cytokines in wild-type and NGAL-deficient chimeric mice with anti-MPO antibody-induced NCGN. To assess the role of TH17 immunity, we transplanted irradiated MPO-immunized MPO-deficient mice with bone marrow from either wild-type or NGAL-deficient mice; we also transplanted irradiated MPO-immunized MPO/IL-17A double-deficient mice with bone marrow from either IL-17A-deficient or NGAL/IL-17A double-deficient mice. RESULTS: Mice and patients with active ANCA-associated vasculitis demonstrated strongly increased serum and urinary NGAL levels. ANCA-stimulated neutrophils released NGAL. Mice with NGAL-deficient bone marrow developed worsened MPO-ANCA-induced NCGN. Intrinsic neutrophil functions were similar in NGAL-deficient and wild-type neutrophils, whereas T cell immunity was increased in chimeric mice with NGAL-deficient neutrophils with more renal infiltrating TH17 cells. NGAL-expressing neutrophils and CD3+ T cells were in close proximity in kidney and spleen. CD4+ T cells showed no intrinsic difference in proliferation and polarization in vitro, whereas iron siderophore-loaded NGAL suppressed TH17 polarization. We found significantly attenuated NCGN in IL-17A-deficient chimeras compared with MPO-deficient mice receiving wild-type bone marrow, as well as in NGAL/IL-17A-deficient chimeras compared with NGAL-deficient chimeras. CONCLUSIONS: Our findings support that bone marrow-derived, presumably neutrophil, NGAL protects from ANCA-induced NCGN by downregulating TH17 immunity.
Assuntos
Glomerulonefrite/imunologia , Glomerulonefrite/metabolismo , Lipocalina-2/genética , Lipocalina-2/metabolismo , Células Th17/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/metabolismo , Anticorpos Anticitoplasma de Neutrófilos , Antígenos CD28/metabolismo , Complexo CD3/metabolismo , Linfócitos T CD4-Positivos/fisiologia , Proliferação de Células , Quimera , Modelos Animais de Doenças , Feminino , Glomerulonefrite/patologia , Humanos , Imunidade Celular , Interleucina-17/genética , Rim/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Peroxidase/imunologia , Sideróforos/metabolismo , Baço/patologiaRESUMO
The primary cilium is found in most mammalian cells and plays a functional role in tissue homeostasis and organ development by modulating key signaling pathways. Ciliopathies are a group of genetically heterogeneous disorders resulting from defects in cilia development and function. Patients with ciliopathic disorders exhibit a range of phenotypes that include nephronophthisis (NPHP), a progressive tubulointerstitial kidney disease that commonly results in end-stage renal disease (ESRD). In recent years, distal appendages (DAPs), which radially project from the distal end of the mother centriole, have been shown to play a vital role in primary ciliary vesicle docking and the initiation of ciliogenesis. Mutations in the genes encoding these proteins can result in either a complete loss of the primary cilium, abnormal ciliary formation, or defective ciliary signaling. DAPs deficiency in humans or mice commonly results in NPHP. In this review, we outline recent advances in our understanding of the molecular functions of DAPs and how they participate in nephronophthisis development.
Assuntos
Centrossomo/metabolismo , Cílios/metabolismo , Doenças Renais Císticas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Corpos Basais/metabolismo , Membrana Celular/metabolismo , Centríolos/metabolismo , Vesículas Citoplasmáticas/metabolismo , Humanos , Doenças Renais Císticas/congênito , Modelos BiológicosRESUMO
Proper renal function relies on the tightly regulated development of nephrons and collecting ducts. This process, known as tubulogenesis, involves dynamic cellular and molecular changes that instruct cells to form highly organized tubes of epithelial cells which compartmentalize the renal interstitium and tubular lumen via assembly of a selective barrier. The integrity and diversity of the various renal epithelia is achieved via formation of intercellular protein complexes along the apical-basal axis of the epithelial cells. In recent years, the evolutionarily conserved family of Grainyhead-like (GRHL) transcription factors which encompasses three mammalian family members (Grainyhead-like 1, 2, 3) has emerged as a group of critical regulators for organ development, epithelial differentiation, and barrier formation. Evidence from transgenic animal models supports the presence of Grainyhead-like-dependent transcriptional mechanisms that promote formation and maintenance of epithelial barriers in the kidney. In this review, we highlight different Grhl-dependent mechanisms that modulate epithelial differentiation in the kidney. Additionally, we discuss how disruptions in these mechanisms result in impaired renal function later in life.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Nefropatias/metabolismo , Rim/fisiologia , Fatores de Transcrição/metabolismo , Animais , Células Epiteliais/metabolismo , HumanosRESUMO
BACKGROUND: RNA sequencing data is providing abundant information about the levels of dysregulation of genes in various tumors. These data, as well as data based on older microarray technologies have enabled the identification of many genes which are upregulated in clear cell renal cell carcinoma (ccRCC) compared to matched normal tissue. Here we use RNA sequencing data in order to construct a panel of highly overexpressed genes in ccRCC so as to evaluate their RNA levels in whole blood and determine any diagnostic potential of these levels for renal cell carcinoma patients. METHODS: A bioinformatics analysis with Python was performed using TCGA, GEO and other databases to identify genes which are upregulated in ccRCC while being absent in the blood of healthy individuals. Quantitative Real Time PCR (RT-qPCR) was subsequently used to measure the levels of candidate genes in whole blood (PAX gene) of 16 ccRCC patients versus 11 healthy individuals. PCR results were processed in qBase and GraphPadPrism and statistics was done with Mann-Whitney U test. RESULTS: While most analyzed genes were either undetectable or did not show any dysregulated expression, two genes, CDK18 and CCND1, were paradoxically downregulated in the blood of ccRCC patients compared to healthy controls. Furthermore, LOX showed a tendency towards upregulation in metastatic ccRCC samples compared to non-metastatic. CONCLUSIONS: This analysis illustrates the difficulty of detecting tumor regulated genes in blood and the possible influence of interference from expression in blood cells even for genes conditionally absent in normal blood. Testing in plasma samples indicated that tumor specific mRNAs were not detectable. While CDK18, CCND1 and LOX mRNAs might carry biomarker potential, this would require validation in an independent, larger patient cohort.
Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Células Neoplásicas Circulantes , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/sangue , Carcinoma de Células Renais/sangue , Feminino , Estudos de Associação Genética/métodos , Humanos , Neoplasias Renais/sangue , Masculino , Pessoa de Meia-Idade , Células Neoplásicas Circulantes/metabolismo , RNA Mensageiro/sangueRESUMO
Grainyhead (Grh)/CP2 transcription factors are highly conserved in multicellular organisms as key regulators of epithelial differentiation, organ development and skin barrier formation. In addition, they have been implicated as being tumor suppressors in a variety of human cancers. Despite their physiological importance, little is known about their structure and DNA binding mode. Here, we report the first structural study of mammalian Grh/CP2 factors. Crystal structures of the DNA-binding domains of grainyhead-like (Grhl) 1 and Grhl2 reveal a closely similar conformation with immunoglobulin-like core. Both share a common fold with the tumor suppressor p53, but differ in important structural features. The Grhl1 DNA-binding domain binds duplex DNA containing the consensus recognition element in a dimeric arrangement, supporting parsimonious target-sequence selection through two conserved arginine residues. We elucidate the molecular basis of a cancer-related mutation in Grhl1 involving one of these arginines, which completely abrogates DNA binding in biochemical assays and transcriptional activation of a reporter gene in a human cell line. Thus, our studies establish the structural basis of DNA target-site recognition by Grh transcription factors and reveal how tumor-associated mutations inactivate Grhl proteins. They may serve as points of departure for the structure-based development of Grh/CP2 inhibitors for therapeutic applications.
Assuntos
DNA/química , Proteínas Repressoras/química , Ativação Transcricional , Animais , Arginina/química , Linhagem Celular , Claudina-4/genética , DNA/metabolismo , Proteínas de Ligação a DNA/química , Humanos , Camundongos , Modelos Moleculares , Mutação , Regiões Promotoras Genéticas , Ligação Proteica , Domínios Proteicos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/químicaRESUMO
BACKGROUND: Arginine-vasopressin (AVP) binding to vasopressin V2 receptors promotes redistribution of the water channel aquaporin-2 (AQP2) from intracellular vesicles into the plasma membrane of renal collecting duct principal cells. This pathway fine-tunes renal water reabsorption and urinary concentration, and its perturbation is associated with diabetes insipidus. Previously, we identified the antimycotic drug fluconazole as a potential modulator of AQP2 localization. METHODS: We assessed the influence of fluconazole on AQP2 localization in vitro and in vivo as well as the drug's effects on AQP2 phosphorylation and RhoA (a small GTPase, which under resting conditions, maintains F-actin to block AQP2-bearing vesicles from reaching the plasma membrane). We also tested fluconazole's effects on water flow across epithelia of isolated mouse collecting ducts and on urine output in mice treated with tolvaptan, a VR2 blocker that causes a nephrogenic diabetes insipidus-like excessive loss of hypotonic urine. RESULTS: Fluconazole increased plasma membrane localization of AQP2 in principal cells independent of AVP. It also led to an increased AQP2 abundance associated with alterations in phosphorylation status and ubiquitination as well as inhibition of RhoA. In isolated mouse collecting ducts, fluconazole increased transepithelial water reabsorption. In mice, fluconazole increased collecting duct AQP2 plasma membrane localization and reduced urinary output. Fluconazole also reduced urinary output in tolvaptan-treated mice. CONCLUSIONS: Fluconazole promotes collecting duct AQP2 plasma membrane localization in the absence of AVP. Therefore, it might have utility in treating forms of diabetes insipidus (e.g., X-linked nephrogenic diabetes insipidus) in which the kidney responds inappropriately to AVP.
Assuntos
Aquaporina 2/metabolismo , Transporte Biológico/genética , Colforsina/farmacologia , Diabetes Insípido Nefrogênico/tratamento farmacológico , Fluconazol/farmacologia , Proteína rhoA de Ligação ao GTP/efeitos dos fármacos , Análise de Variância , Animais , Membrana Celular/metabolismo , Células Cultivadas , Diabetes Insípido Nefrogênico/metabolismo , Modelos Animais de Doenças , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fosforilação/genética , Distribuição Aleatória , Transdução de Sinais , Estatísticas não ParamétricasRESUMO
Bone morphogenetic protein (BMP) signaling has been shown to modulate the development of renal fibrosis in animal models of kidney injury, but the downstream mediators are incompletely understood. In wild-type mice, canonical BMP signaling mediated by SMAD1/5/8 transcription factors was constitutively active in healthy renal tubules, transiently down-regulated after ischemia reperfusion injury (IRI), and reactivated during successful tubular regeneration. We then induced IRI in mice with a tubular-specific BMP receptor 1A (BMPR1A) deletion. These mice failed to reactivate SMAD1/5/8 signaling in the post-ischemic phase and developed renal fibrosis after injury. Using unbiased genomic analyses, we identified three genes encoding inhibitor of DNA-binding (ID) proteins (Id1, Id2, and Id4) as key targets of BMPR1A-SMAD1/5/8 signaling. BMPR1A-deficient mice failed to re-induce these targets following IRI. Instead, BMPR1A-deficiency resulted in activation of pro-fibrotic signaling proteins that are normally repressed by ID proteins, namely, p38 mitogen-activated protein kinase and cell cycle inhibitor p27. These data indicate that the post-ischemic activation of canonical BMP signaling acts endogenously to repress pro-fibrotic signaling in tubular cells and may help to prevent the progression of acute kidney injury to chronic kidney disease.
Assuntos
Injúria Renal Aguda/patologia , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Túbulos Renais/patologia , Injúria Renal Aguda/etiologia , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Humanos , Proteínas Inibidoras de Diferenciação/metabolismo , Túbulos Renais/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Insuficiência Renal Crônica/patologia , Traumatismo por Reperfusão/complicações , Transdução de Sinais , Proteínas Smad Reguladas por Receptor/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
Collecting ducts make up the distal-most tubular segments of the kidney, extending from the cortex, where they connect to the nephron proper, into the medulla, where they release urine into the renal pelvis. During water deprivation, body water preservation is ensured by the selective transepithelial reabsorption of water into the hypertonic medullary interstitium mediated by collecting ducts. The collecting duct epithelium forms tight junctions composed of barrier-enforcing claudins and exhibits a higher transepithelial resistance than other segments of the renal tubule exhibit. However, the functional relevance of this strong collecting duct epithelial barrier is unresolved. Here, we report that collecting duct-specific deletion of an epithelial transcription factor, grainyhead-like 2 (GRHL2), in mice led to reduced expression of tight junction-associated barrier components, reduced collecting duct transepithelial resistance, and defective renal medullary accumulation of sodium and other osmolytes. In vitro, Grhl2-deficient collecting duct cells displayed increased paracellular flux of sodium, chloride, and urea. Consistent with these effects, Grhl2-deficient mice had diabetes insipidus, produced dilute urine, and failed to adequately concentrate their urine after water restriction, resulting in susceptibility to prerenal azotemia. These data indicate a direct functional link between collecting duct epithelial barrier characteristics, which appear to prevent leakage of interstitial osmolytes into urine, and body water homeostasis.
Assuntos
Epitélio/fisiologia , Túbulos Renais Coletores/fisiologia , Osmorregulação/genética , Junções Íntimas/genética , Junções Íntimas/fisiologia , Fatores de Transcrição/genética , Animais , Aquaporina 2/metabolismo , Aquaporina 4/metabolismo , Arginina Vasopressina/metabolismo , Azotemia/etiologia , Transporte Biológico/genética , Creatinina/urina , Perfilação da Expressão Gênica , Masculino , Camundongos , Concentração Osmolar , Transdução de Sinais , Ureia/metabolismo , Urina , Água/metabolismo , Privação de Água/fisiologiaRESUMO
The renal collecting duct fine-tunes urinary composition, and thereby, coordinates key physiological processes, such as volume/blood pressure regulation, electrolyte-free water reabsorption, and acid-base homeostasis. The collecting duct epithelium is comprised of a tight epithelial barrier resulting in a strict separation of intraluminal urine and the interstitium. Tight junctions are key players in enforcing this barrier and in regulating paracellular transport of solutes across the epithelium. The features of tight junctions across different epithelia are strongly determined by their molecular composition. Claudins are particularly important structural components of tight junctions because they confer barrier and transport properties. In the collecting duct, a specific set of claudins (Cldn-3, Cldn-4, Cldn-7, Cldn-8) is expressed, and each of these claudins has been implicated in mediating aspects of the specific properties of its tight junction. The functional disruption of individual claudins or of the overall barrier function results in defects of blood pressure and water homeostasis. In this concise review, we provide an overview of the current knowledge on the role of the collecting duct epithelial barrier and of claudins in collecting duct function and pathophysiology.
Assuntos
Claudinas/metabolismo , Túbulos Renais Coletores/metabolismo , Animais , Células Epiteliais/metabolismo , Humanos , Transporte de Íons , Reabsorção RenalRESUMO
Healthy placental development is essential for reproductive success; failure of the feto-maternal interface results in pre-eclampsia and intrauterine growth retardation. We found that grainyhead-like 2 (GRHL2), a CP2-type transcription factor, is highly expressed in chorionic trophoblast cells, including basal chorionic trophoblast (BCT) cells located at the chorioallantoic interface in murine placentas. Placentas from Grhl2-deficient mouse embryos displayed defects in BCT cell polarity and basement membrane integrity at the chorioallantoic interface, as well as a severe disruption of labyrinth branching morphogenesis. Selective Grhl2 inactivation only in epiblast-derived cells rescued all placental defects but phenocopied intraembryonic defects observed in global Grhl2 deficiency, implying the importance of Grhl2 activity in trophectoderm-derived cells. ChIP-seq identified 5282 GRHL2 binding sites in placental tissue. By integrating these data with placental gene expression profiles, we identified direct and indirect Grhl2 targets and found a marked enrichment of GRHL2 binding adjacent to genes downregulated in Grhl2(-/-) placentas, which encoded known regulators of placental development and epithelial morphogenesis. These genes included that encoding the serine protease inhibitor Kunitz type 1 (Spint1), which regulates BCT cell integrity and labyrinth formation. In human placenta, we found that human orthologs of murine GRHL2 and its targets displayed co-regulation and were expressed in trophoblast cells in a similar domain as in mouse placenta. Our data indicate that a conserved Grhl2-coordinated gene network controls trophoblast branching morphogenesis, thereby facilitating development of the site of feto-maternal exchange. This might have implications for syndromes related to placental dysfunction.