Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cereb Cortex ; 30(9): 4871-4881, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32350517

RESUMO

In order for organisms to survive, they need to detect rewarding stimuli, for example, food or a mate, in a complex environment with many competing stimuli. These rewarding stimuli should be detected even if they are nonsalient or irrelevant to the current goal. The value-driven theory of attentional selection proposes that this detection takes place through reward-associated stimuli automatically engaging attentional mechanisms. But how this is achieved in the brain is not very well understood. Here, we investigate the effect of differential reward on the multiunit activity in visual area V4 of monkeys performing a perceptual judgment task. Surprisingly, instead of finding reward-related increases in neural responses to the perceptual target, we observed a large suppression at the onset of the reward indicating cues. Therefore, while previous research showed that reward increases neural activity, here we report a decrease. More suppression was caused by cues associated with higher reward than with lower reward, although neither cue was informative about the perceptually correct choice. This finding of reward-associated neural suppression further highlights normalization as a general cortical mechanism and is consistent with predictions of the value-driven attention theory.


Assuntos
Atenção/fisiologia , Sinais (Psicologia) , Recompensa , Córtex Visual/fisiologia , Animais , Macaca mulatta , Masculino , Estimulação Luminosa
2.
J Neurosci ; 34(35): 11857-64, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25164679

RESUMO

The local field potential (LFP) in visual cortex is typically characterized by the following spectral pattern: before the onset of a visual stimulus, low-frequency oscillations (beta, 12-20 Hz) dominate, whereas during the presentation of a stimulus these oscillations diminish and are replaced by fluctuations at higher frequencies (gamma, >30 Hz). The origin of beta oscillations in vivo remains unclear, as is the basis of their suppression during visual stimulation. Here we investigate the contribution of ascending input from primary visual cortex (V1) to beta oscillation dynamics in extrastriate visual area V4 of behaving monkeys. We recorded LFP activity in V4 before and after resecting a portion of V1. After the surgery, the visually induced gamma LFP activity in the lesion projection zone of V4 was markedly reduced, consistent with previously reported spiking responses (Schmid et al., 2013). In the beta LFP range, the lesion had minimal effect on the normal pattern of spontaneous oscillations. However, the lesion led to a surprising and permanent reversal of the normal beta suppression during visual stimulation, with visual stimuli eliciting beta magnitude increases up to 50%, particularly in response to moving stimuli. This reversed beta activity pattern was specific to stimulus locations affected by the V1 lesion. Our results shed light on the mechanisms of beta activity in extrastriate visual cortex: The preserved spontaneous oscillations point to a generation mechanism independent of the geniculostriate pathway, whereas the positive beta responses support the contribution of visual information to V4 via direct thalamo-extrastriate projections.


Assuntos
Potenciais Evocados Visuais/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Animais , Relógios Biológicos/fisiologia , Eletroencefalografia , Feminino , Macaca mulatta , Estimulação Luminosa
3.
J Neurosci ; 33(48): 18740-5, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24285880

RESUMO

Neurons in cortical ventral-stream area V4 are thought to contribute to important aspects of visual processing by integrating information from primary visual cortex (V1). However, how V4 neurons respond to visual stimulation after V1 injury remains unclear: While electrophysiological investigation of V4 neurons during reversible V1 inactivation suggests that virtually all responses are eliminated (Girard et al., 1991), fMRI in humans and monkeys with permanent lesions shows reliable V1-independent activity (Baseler et al., 1999; Goebel et al., 2001; Schmid et al., 2010). To resolve this apparent discrepancy, we longitudinally assessed neuronal functions of macaque area V4 using chronically implanted electrode arrays before and after creating a permanent aspiration lesion in V1. During the month after lesioning, we observed weak yet significant spiking activity in response to stimuli presented to the lesion-affected part of the visual field. These V1-independent responses showed sensitivity for motion and likely reflect the effect of V1-bypassing geniculate input into extrastriate areas.


Assuntos
Percepção de Movimento/fisiologia , Córtex Visual/fisiologia , Algoritmos , Animais , Cegueira/psicologia , Interpretação Estatística de Dados , Fenômenos Eletrofisiológicos , Movimentos Oculares/fisiologia , Feminino , Fixação Ocular , Estudos Longitudinais , Macaca mulatta , Imageamento por Ressonância Magnética , Estimulação Luminosa , Desempenho Psicomotor/fisiologia , Escotoma/fisiopatologia , Percepção Espacial/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia
4.
J Neurosci ; 33(50): 19599-610, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24336724

RESUMO

Slow waves represent one of the prominent EEG signatures of non-rapid eye movement (non-REM) sleep and are thought to play an important role in the cellular and network plasticity that occurs during this behavioral state. These slow waves of natural sleep are currently considered to be exclusively generated by intrinsic and synaptic mechanisms within neocortical territories, although a role for the thalamus in this key physiological rhythm has been suggested but never demonstrated. Combining neuronal ensemble recordings, microdialysis, and optogenetics, here we show that the block of the thalamic output to the neocortex markedly (up to 50%) decreases the frequency of slow waves recorded during non-REM sleep in freely moving, naturally sleeping-waking rats. A smaller volume of thalamic inactivation than during sleep is required for observing similar effects on EEG slow waves recorded during anesthesia, a condition in which both bursts and single action potentials of thalamocortical neurons are almost exclusively dependent on T-type calcium channels. Thalamic inactivation more strongly reduces spindles than slow waves during both anesthesia and natural sleep. Moreover, selective excitation of thalamocortical neurons strongly entrains EEG slow waves in a narrow frequency band (0.75-1.5 Hz) only when thalamic T-type calcium channels are functionally active. These results demonstrate that the thalamus finely tunes the frequency of slow waves during non-REM sleep and anesthesia, and thus provide the first conclusive evidence that a dynamic interplay of the neocortical and thalamic oscillators of slow waves is required for the full expression of this key physiological EEG rhythm.


Assuntos
Potenciais de Ação/fisiologia , Neurônios/fisiologia , Sono/fisiologia , Tálamo/fisiologia , Animais , Canais de Cálcio Tipo T/metabolismo , Córtex Cerebral/fisiologia , Eletroencefalografia , Masculino , Ratos , Ratos Wistar
5.
Curr Biol ; 31(3): 635-642.e3, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33278356

RESUMO

Theta (3-9 Hz) and gamma (30-100 Hz) oscillations have been observed at different levels along the hierarchy of cortical areas and across a wide set of cognitive tasks. In the visual system, the emergence of both rhythms in primary visual cortex (V1) and mid-level cortical areas V4 has been linked with variations in perceptual reaction times.1-5 Based on analytical methods to infer causality in neural activation patterns, it was concluded that gamma and theta oscillations might both reflect feedforward sensory processing from V1 to V4.6-10 Here, we report on experiments in macaque monkeys in which we experimentally assessed the presence of both oscillations in the neural activity recorded from multi-electrode arrays in V1 and V4 before and after a permanent V1 lesion. With intact cortex, theta and gamma oscillations could be reliably elicited in V1 and V4 when monkeys viewed a visual contour illusion and showed phase-to-amplitude coupling. Laminar analysis in V1 revealed that both theta and gamma oscillations occurred primarily in the supragranular layers, the cortical output compartment of V1. However, there was a clear dissociation between the two rhythms in V4 that became apparent when the major feedforward input to V4 was removed by lesioning V1: although V1 lesioning eliminated V4 theta, it had little effect on V4 gamma power except for delaying its emergence by >100 ms. These findings suggest that theta is more tightly associated with feedforward processing than gamma and pose limits on the proposed role of gamma as a feedforward mechanism.


Assuntos
Córtex Visual Primário , Animais , Macaca , Estimulação Luminosa , Tempo de Reação
7.
Curr Biol ; 28(15): 2377-2387.e5, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30017481

RESUMO

Growing evidence suggests that distributed spatial attention may invoke theta (3-9 Hz) rhythmic sampling processes. The neuronal basis of such attentional sampling is, however, not fully understood. Here we show using array recordings in visual cortical area V4 of two awake macaques that presenting separate visual stimuli to the excitatory center and suppressive surround of neuronal receptive fields (RFs) elicits rhythmic multi-unit activity (MUA) at 3-6 Hz. This neuronal rhythm did not depend on small fixational eye movements. In the context of a distributed spatial attention task, during which the monkeys detected a spatially and temporally uncertain target, reaction times (RTs) exhibited similar rhythmic fluctuations. RTs were fast or slow depending on the target occurrence during high or low MUA, resulting in rhythmic MUA-RT cross-correlations at theta frequencies. These findings show that theta rhythmic neuronal activity can arise from competitive RF interactions and that this rhythm may result in rhythmic RTs potentially subserving attentional sampling.


Assuntos
Atenção/fisiologia , Macaca mulatta/fisiologia , Tempo de Reação/fisiologia , Transmissão Sináptica/fisiologia , Ritmo Teta/fisiologia , Córtex Visual/fisiologia , Animais , Masculino , Neurônios/fisiologia , Estimulação Luminosa , Vigília
8.
Sci Rep ; 7(1): 6431, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743958

RESUMO

Spatial attention allows us to make more accurate decisions about events in our environment. Decision confidence is thought to be intimately linked to the decision making process as confidence ratings are tightly coupled to decision accuracy. While both spatial attention and decision confidence have been subjected to extensive research, surprisingly little is known about the interaction between these two processes. Since attention increases performance it might be expected that confidence would also increase. However, two studies investigating the effects of endogenous attention on decision confidence found contradictory results. Here we investigated the effects of two distinct forms of spatial attention on decision confidence; endogenous attention and exogenous attention. We used an orientation-matching task, comparing the two attention conditions (endogenous and exogenous) to a control condition without directed attention. Participants performed better under both attention conditions than in the control condition. Higher confidence ratings than the control condition were found under endogenous attention but not under exogenous attention. This finding suggests that while attention can increase confidence ratings, it must be voluntarily deployed for this increase to take place. We discuss possible implications of this relative overconfidence found only during endogenous attention with respect to the theoretical background of decision confidence.


Assuntos
Atenção , Tomada de Decisões , Adulto , Sinais (Psicologia) , Movimentos Oculares , Feminino , Humanos , Masculino , Experimentação Humana não Terapêutica , Orientação
9.
Sci Rep ; 6: 34886, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27721468

RESUMO

A fundamental property of brain function is that the spiking activity of cortical neurons is variable and that some of this variability is correlated between neurons. Correlated activity not due to the stimulus arises from shared input but the neuronal circuit mechanisms that result in these noise correlations are not fully understood. Here we tested in the visual system if correlated variability in mid-level area V4 of visual cortex is altered following extensive lesions of primary visual cortex (V1). To this end we recorded longitudinally the neuronal correlations in area V4 of two behaving macaque monkeys before and after a V1 lesion while the monkeys fixated a grey screen. We found that the correlations of neuronal activity survived the lesions in both monkeys. In one monkey, the correlation of multi-unit spiking signals was strongly increased in the first week post-lesion, while in the second monkey, correlated activity was slightly increased, but not greater than some week-by-week fluctuations observed. The typical drop-off of inter-neuronal correlations with cortical distance was preserved after the lesion. Therefore, as V4 noise correlations remain without feedforward input from V1, these results suggest instead that local and/or feedback input seem to be necessary for correlated activity.


Assuntos
Neurônios/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Animais , Feminino , Macaca mulatta , Monitorização Neurofisiológica/métodos , Estimulação Luminosa
10.
J Neurosci Methods ; 235: 83-91, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25004203

RESUMO

BACKGROUND: The advent of optogenetics has given neuroscientists the opportunity to excite or inhibit neuronal population activity with high temporal resolution and cellular selectivity. Thus, when combined with recordings of neuronal ensemble activity in freely moving animals optogenetics can provide an unprecedented snapshot of the contribution of neuronal assemblies to (patho)physiological conditions in vivo. Still, the combination of optogenetic and silicone probe (or tetrode) recordings does not allow investigation of the role played by voltage- and transmitter-gated channels of the opsin-transfected neurons and/or other adjacent neurons in controlling neuronal activity. NEW METHOD AND RESULTS: We demonstrate that optogenetics and silicone probe recordings can be combined with intracerebral reverse microdialysis for the long-term delivery of neuroactive drugs around the optic fiber and silicone probe. In particular, we show the effect of antagonists of T-type Ca(2+) channels, hyperpolarization-activated cyclic nucleotide-gated channels and metabotropic glutamate receptors on silicone probe-recorded activity of the local opsin-transfected neurons in the ventrobasal thalamus, and demonstrate the changes that the block of these thalamic channels/receptors brings about in the network dynamics of distant somatotopic cortical neuronal ensembles. COMPARISON WITH EXISTING METHODS: This is the first demonstration of successfully combining optogenetics and neuronal ensemble recordings with reverse microdialysis. This combination of techniques overcomes some of the disadvantages that are associated with the use of intracerebral injection of a drug-containing solution at the site of laser activation. CONCLUSIONS: The combination of reverse microdialysis, silicone probe recordings and optogenetics can unravel the short and long-term effects of specific transmitter- and voltage-gated channels on laser-modulated firing at the site of optogenetic stimulation and the actions that these manipulations exert on distant neuronal populations.


Assuntos
Equipamentos e Provisões Elétricas , Microdiálise/métodos , Neurônios/fisiologia , Optogenética/métodos , Tálamo/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Ritmo Delta/efeitos dos fármacos , Ritmo Delta/fisiologia , Eletroencefalografia/instrumentação , Eletroencefalografia/métodos , Eletromiografia , Masculino , Microdiálise/instrumentação , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Vias Neurais/cirurgia , Neurônios/efeitos dos fármacos , Procedimentos Neurocirúrgicos , Optogenética/instrumentação , Ratos Wistar , Receptores de Glutamato Metabotrópico/metabolismo , Processamento de Sinais Assistido por Computador , Silicones , Tálamo/efeitos dos fármacos , Tálamo/cirurgia
11.
Front Comput Neurosci ; 7: 170, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312047

RESUMO

Learning and memory formation are processes which are still not fully understood. It is widely believed that synaptic plasticity is the most important neural substrate for both. However, it has been observed that large-scale theta band oscillations in the mammalian brain are beneficial for learning, and it is not clear if and how this is linked to synaptic plasticity. Also, the underlying dynamics of synaptic plasticity itself have not been completely uncovered yet, especially for non-linear interactions between multiple spikes. Here, we present a new and simple dynamical model of synaptic plasticity. It incorporates novel contributions to synaptic plasticity including adaptation processes. We test its ability to reproduce non-linear effects on four different data sets of complex spike patterns, and show that the model can be tuned to reproduce the observed synaptic changes in great detail. When subjected to periodically varying firing rates, already linear pair based spike timing dependent plasticity (STDP) predicts a specific susceptibility of synaptic plasticity to pre- and postsynaptic firing rate oscillations in the theta-band. Our model retains this band-pass property, while for high firing rates in the non-linear regime it modifies the specific phase relation required for depression and potentiation. For realistic parameters, maximal synaptic potentiation occurs when the postsynaptic is trailing the presynaptic activity slightly. Anti-phase oscillations tend to depress it. Our results are well in line with experimental findings, providing a straightforward and mechanistic explanation for the importance of theta oscillations for learning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA